Ионообменная хроматография вредных веществ в анализе объектов окружающей среды
ГЛАВА 2. ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ИОНООБМЕННОЙ ХРОМАТОГРАФИИ В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ
Внеколоночное образование ионной пары для разделения смеси карбоновых и оксикислот методом ион-парной вэжх[17]
Определение оптически неактивных окси- и карбоновых кислот как правило осуществляется методом ионной хроматографии с электрохимическим детектором. Про
ведение разделения и идентификации данных веществ с использованием УФ-детектора возможно при добавлении к элюенту «непрозрачных» в области рабочих длин волн реагентов, образовывающих с определяемым веществом ионную пару и реализацией метода ион-парной ВЭЖХ.
Целью работы было: оптимизация условий образования ассоциата физиологически важных окси- и карбоновых кислот с ион-парным реагентом, хроматографического поведения, разработка основ количественного определения веществ в многокомпонентных рецептурах.
Исследования проводили на хроматографе «Цвет-304» (Россия, г. Дзержинск) в изократическом режиме элюирования сорбатов с УФ-детектором (λ=254нм). Анализы выполняли на стальной аналитической колонке (100х5,4мм), заполненной суспензионным способом сорбентом Силасорб С18 (7,5 мкм). Состав подвижной фазы состоял из фосфатного буферного раствора с добавлением изо-пропилового спирта. В качестве ион-парного реагента были взяты – цетилпиридинийхлорид и бром-N,N,N,N,N,N-гексаэтилметантриамин.
В процессе оптимизации условий разделения и образования ион-парного ассоциата установлено влияние состава и рН элюента, природы и содержания органического растворителя в нем. Проведена сравнительная оценка эффективности применения катионных поверхностно-активных веществ в качестве ион-парных реагентов, а также возможности вне колоночного образования ионной пары.
Результаты исследования послужили основой для разработки методик количественного контроля содержания оптически неактивных окси- и карбоновых кислот в продуктах пищевой, косметической и животноводческой промышленности.
Определение полифенольных соединений подвидов подорожника большого[18]
Изучение состава вторичных метаболитов высших растений представляет интерес как с позиции дифференциации их подвидов, так и с точки зрения ресурсоведения, поскольку полифенольные соединения и флавоноиды обладают широким спектром полезной биологической активности.
Предложена и отработана схема экстракции полифенолов из двух подвидов подорожника большого (ssp. major и ssp. pleiosperma) на примере 114 образцов индивидуальных растений. Выполнено хроматографирование этилацетатных экстрактов методами ТСХ, БХ, колоночной и ионообменной хроматографии в различных элюирующих системах. Идентификацию полифенольных соединений проводили по стандартным образцам (рутин, кверцетин) методами УФ спектроскопии по характерным сдвигам максимумов поглощения соединений после добавления комплексообразующих веществ по стандартной методике или по значениям Rf на пластинках “Силуфол” в фиксированных условиях согласно справочным данным.
Достоверно установлено, что два рассмотренных подвида подорожника большого имеют различный полифенольный состав, что может служить экспресс-методом для их идентификации. Известно, что разделение подвидов по их морфологическим признакам трудоемко и возможно только после завершения вегетации растения осенью.
Анализ пива методом ионной хроматографии[19]
Диапазон компонентов, представляющих интерес для производства пива - от неорганических ионов, органических кислот, и горечи хмеля, определяющего общий вкус и горечь напитка - до протеинов, карбогидратов, и спиртов, которые определяются, чтобы определить длительность брожения. Готовое пиво может быть проанализировано на определение концентрации добавленных консервантов и красителей, для дополнительного гарантирования соблюдения производственной технологии.
Первый шаг в производстве пива это процесс замачивания ячменя, или иногда другого зерна, в теплой воде. Присутствующие в ячмене ферменты перерабатывают крахмал в зернах, производя при этом по большей части глюкозу, мальтозу и другие олиго- и полисахариды. Этот процесс называется размягчением и в результате получается сладкое сусло. Сладкое сусло затем смешивается с хмелем и получается хмелевое сусло. При добавлении дрожжей сахариды бродят и производят спирт. Из-за различия концентраций, химического поведения, диапазона молекулярных масс различных компонентов в пиве их выделение и определение очень трудная задача. Ионная хроматография, использующая полимерные смолы, обеспечивает мониторинг многих из этих компонентов во время пивоварения и в готовом продукте.
Эта статья описывает использование ионообменной и ионо-эксклюзионной хроматографии для определения пяти классов компонентов, представляющих интерес для производства пива, включая: карбогидраты, спирты, органические кислоты, неорганические анионы и неорганические катионы. Для детектирования используются импульсный электрохимический или кондуктометрический детекторы.
Рисунок 1. Разделение ферментных сахаров в сусле методом ионообменной хроматографии с импульсным амперометрическим детектором.
Проба перед дозированием была разбавлена в 10 раз.
Рисунок 2. Разделение моно-, ди- и трисахаридов в Американском пиве с помощью ионообменной хроматографии с импульсным амперометрическим детектором. Перед дозированием пробу разбавили 1:10.
Анализ карбогидратов
Карбогидраты и другие вещества, содержащие гидрооксильные группы, могут быть детектированы измерением тока при их окислении на золотом электроде. Используется последовательное повторение приложения трех потенциалов, первый для окисления карбогидратов, и затем очистки электрода от продуктов реакции окисления преложением большого положительного и затем отрицательного потенциалов. Эта последовательность повторяется каждую секунду для устранения загрязнения электрода и тем самым гарантии воспроизводимости сигнала. Без этого высота пика будет стабильно уменьшаться а поверхность электрода загрязнится. Из-за того что карбогидраты имеют pK a между 12 и 14, они могут быть разделены как анионы методом ионообменной хроматографии. Для проведения реакции окисления на рбочем электроде элюент должен иметь рН 12, при этом смола колонок полимерная и стабильна в диапазоне pH 0-14. Используя гидрооксидный градиент, сахара были разделены на колонке следующей последовательности: моносахариды, дисахариды и трисахариды.
Рисунок 3. Разделение малто-олигосахаридов в Американском пиве с помощью ионообменной хроматографии с импульсным амперометрическим детектором. Перед дозированием пробу разбавили 1:10.
Условия разделения показаны для хроматограмм представленных на рисунках 1 и 2 показаны в табл. 2. Карбогидраты наиболее важные в пивном производстве ферментные сахара. В основном сахариды больше чем DP3 не бродят; однако, они вносят вклад в цвет и общий аромат пива и являются главными. На рисунке 1 показано разделение бродильных сахаров (< DP3) в пробе хмелевого сусла. Эти сахара превращаются в спирт. Если сравнить рисунок с разделением показанным на рис. 2., то отличие между готовым пивом и пивом в процессе производства очевидно. Как и ожидалось, концентрация бродильных сахаров в сусле выше, чем в готовом пиве. Сложные сахара, крахмал и декстрины разлагаются ферментами и образуют сусло с высоким брожением, состоят из глюкозных элементов. Мальтоза простейший из сложных сахаров образован двумя молекулами глюкозы соединенных 1,4 связями. Приняты названия в соответствии с числом единиц глюкозы связанных в сложных сахарах. Так малтотетроза (DP4), например, состоит из 4-х молекул глюкозы связанных 1,4 связями. Рисунок 3 показывает разделение мальтозных олигосахаридов от DP3 до DP10. Великолепное разделение олигомеров мальтозы вплоть до DP15 возможно, благодаря быстрому профилю градиента. Элюент содержит ацетат натрия с добавлением гидрооксида натрия. Ацетат натрия увеличивает силу элюента, что приводит к уменьшению времени удерживания олигосахаридов. Разделение возможно и без ацетата натрия, но время анализа очень долгое.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль