Кинетические методы определения загрязнителей в различных природных средах
±dZ/dt = k·C1·C2 = k·a·C1·C3, (4)
где Z - положительный (+) или отрицательный (-) отклик тест-организма; t - время; C1 - концентрация активных центров тест-организма; C2 - концентрация токсиканта в фазе тест-организма; C3 - концентрация токсиканта в водной фазе; a - коэффициент пропорциональности между С2 и С3; k - константа скорости реакции отклика тест-организма. Ясно, что в качестве коли
чественного критерия степени токсичности природных вод здесь выступает параметр k.
Распространение представлений формальной химической кинетики на биотестирование, проведя при этом некоторую аналогию между сорбционными свойствами полимерных и биологических мембран, позволяет предвидеть два крайних случая: С1=k1C2 и C2>>C1. Тогда уравнение (4) можно переписать в виде
±dZ/dt = k1·C22, (5)
или в виде
±dZ/dt = k2·C1, (6)
где k1 = k·С1; k2 = k·C2 = k·a·C3.
Из последних выражений следует, что в зависимости от соотношения концентраций активных центров тест-организма и токсичного вещества, реакция отклика тест-организма может быть как бимолекулярной, так и мономолекулярной.
С целью апробирования предлагаемого подхода для мониторинговых исследований изучалось воздействие нефтяного загрязнения на сеголетки русского осетра. В качестве тест-реакции на нефтяные углеводороды (НУ) было использовано изменение концентрации суммарных сульфгидрильных групп в тканях сеголеток. Для этого по 12 экземпляров сеголетки русского осетра длиной тела 6-8 см помещали в аквариумы объемом 20 л с различным содержанием сырой нефти. Предварительно нефть эмульгировали перемешиванием механической мешалкой в течение 10 минут при комнатной температуре. Смена раствора проводили через каждые 3 суток. По истечении заданного времени рыбы извлекали из аквариума и подвергались биохимическому анализу. Параллельные измерения проводили на контрольных рыбах, содержащих в аквариуме без нефти. В процессе опыта рыб кормили живым трубочником.
Сульфгидрильные группы в тканях сеголеток, солюбилизированных додецилсульфатом натрия, определяли методом амперометрического титрования, в качестве титранта использовали нитрат серебра.
Выбор в качестве тест-реакции изменение содержания SH-групп в тканях сеголеток обусловлен следующим. Сульфгидрильные группы выделяются среди других функциональных групп рыб высокой реакционной способностью и многообразием химических реакций, в которые они вступают - алкилирование, ацилирование, окисление, тиолдисульфидный обмен, образование меркаптидов, полумеркаптилий, меркапталов, водородных связей и комплексов с переносом заряда. Во многих реакциях SH-группы принимают участие в форме меркаптидного иона, обладающего высокой нуклеоофильной способностью, они легко окисляются молекулярным кислородом, его радикалами, перекисью водорода. Среди процессов, протекающих в организме с участием SH-групп белковой и небелковой природы, следует отметить ферментативные реакции - в настоящее время насчитывается около 100 ферментов, в активности которых принимают участие SH-групп. SH-групп играют важную роль в ряде физиологических и биохимических процессов - в нервной деятельности, мышечном сокращении, делении клеток, регуляции проницаемости мембран митохондрий, окислительном декарбоксилировании a-кетакислот, окислительном фосфолировании, фотосинтезе, механизме радиационных поражений и при действии токсичных веществ. Из сказанного следует, что концентрация SH-групп должна тонко реагировать на присутствие в природной воде токсичного вещества.
Рис. 1. Изменение концентрации сульфгидрильных групп в теле личинок русского осетра при их экспозиции в воде, содержащей O.05 (1), 0.25 (2), 0.50 (3), 0.75 (4) и 1.00 (5) мг/л нефти. Точки - экспериментальные данные, сплошные линии - расчет по уравнению (14).
Полученные экспериментальные данные приведены на рис. 1. Они показывают, что выдерживание рыб в воде, содержащей нефть, приводит к уменьшению концентрации SH-групп белков и низкомолекулярных тиоловых соединений сеголеток русского осетра. Для краткости назовем этот процесс дезактивацией SH-групп, и применительно к нему перепишем уравнения (5) и (6) в виде:
-dCSH/dt = k1C2SH, (7)
-dCSH/dt = k2CSH. (8)
Решение последних двух уравнений при начальных условиях, t = 0, CSH = C0SH, дает соответственно (9) и (10):
CSH = C0SH/(1+k1tC0SH), (9)
CSH = C0SH[1-exp(-k2t)], (10)
где C0SH и CSH - концентрация сульфгидрильных групп в теле сеголеток до и после воздействия НУ в течение времени t.
Построение анаморфоз уравнений (9) и (10) показала (рис. 2), что кинетика процесса дезактивации сульфгидрильных групп сеголеток лучше подчиняется уравнению реакции второго порядка, чем уравнению реакции первого порядка. Найденные по тангенсу угла наклона прямых 1/CSH=f(t) значения величин k1 приведены в табл. 1.
Таблица 1. Константы скорости дезактивации SH-групп сеголеток русского осетра при их экспозиции в воде, содержащей нефть
Содержание нефти в воде, мг/л |
k1, мкмоль/100 г в сутки |
0.05 0.25 0.50 0.75 1.00 |
1.7 3.9 9.3 14.1 21.7 |
Рис. 2. К проверке выполнимости уравнений (9) и (10) для описания кинетики изменения концентрации SH-групп в теле сеголеток русского осетра. Обозначения, как на рис. 1.
Полученные данные не позволяют однозначно подтвердить или однозначно опровергнуть вопрос о пороге токсического воздействия нефти на гидробионты. В пределах точности эксперимента зависимость константы скорости дезактивации SH-групп от концентрации нефти в воде (Сну) может носить либо линейный
k1=20,23·Cну, (11)
либо нелинейный
k1=1,30+9,28·Cну+11,04·С2ну (12)
характер (рис. 3). Очевидно, при оценке токсического воздействия нефтяных углеводородов на гидробионты необходимо исходить не из общего их содержания в воде, а из концентрации растворенных (активных) форм. Однако на практике не будет большой ошибкой, если исходить из предположения о беспороговом влиянии нефтяного загрязнения и принять, что
k1 = b·Cну, (13)
где b - коэффициент пропорциональности; Сну - содержание нефтяных углеводородов в воде, мг/л.
Рис. 3. Связь между константой скорости реакции дезактивации SH-групп сеголеток русского осетра и содержания нефти в воде. Точки – экспериментальные данные, сплошные линии - расчет по уравнениям (11) и (12).
Если это предположение верно, то, объединив уравнения (9) и (13), получим выражение
CSH = C0SH/(1+b·Cну·C0SH·t), (14)
которое позволяет прогнозировать воздействие нефтяных углеводородов на концентрацию SH-групп в тканях сеголеток при любых значениях нефтяного загрязнения и при любых длительностях экспозиции. О точности выполнимости уравнения (14) можно судить по данным рис. 1, где сопоставлены экспериментальные значения SH-групп в тканях сеголеток с теоретически рассчитанными кривыми.
Другие рефераты на тему «Экология и охрана природы»:
- Современные проблемы охраны окружающей среды
- Определение границ зон экотоксикологической опасности на территории города
- Понятие, виды и цели образования особо охраняемых природных территорий
- Правовые аспекты экологической безопасности на нефтяных предприятиях
- Влияние выхлопных газов автомобилей на рост и развитие растений
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль