Особенности термического режима рек

Другим фактором нарушения строго широтного распределения Qr являются горные области, которым свойственен особый характер распределения солнечной радиации. Для них картографические обобщения изменчивости величины Qr отсутствуют, так как влияние орографического фактора чрезвычайно разнообразно и очень изменчиво в плане, что создает трудности в измерениях на метеостанциях и обобщении этих данных.

Рельеф оказывает влияние на температуру воды в реках вследствие орографического снижения.

Она уменьшается с высотой на 0,60С на каждые 100 м подъема и повышается на 10С на 100 м, когда воздух опускается с гор в долины (Хромов, Петросянц, 2001). Некоторое влияние на этот процесс оказывают и отличия в распределении солнечной радиации на склонах разной экспозиции, особенности питания рек в предгорьях и на равнинных участках. Большие уклоны определяют повышенные скорости течения, интенсивное перемешивание воды в реках. Это приводит к увеличению скорости теплообмена с окружающей средой (атмосферой и дном), а также к относительной однородности температуры воды в поперченном сечении.

Высоту местности можно относить к региональным и к местным факторам формирования температурного режима рек. Зависимость температуры воды в реках от высоты местности (рис. 2.6) отражает влияние совокупности факторов, характерных для территории, по которой она протекает. Она изменятся даже для небольших возвышенностей. Например, для Приволжской и Смоленско-Московской возвышенностей температура воды зависит от двух факторов – от расстояния до истока и от высоты местности. На одной широте и при разной высоте разность температуры воды может достигать 10–150С, что является обычной ситуацией для рек Средней Азии и Кавказа (Соколова, 1951).

Зональный фактор изменения температуры воды связан не только распределением суммарной радиации. Низкая относительная влажность в Средней Азии приводит к большим потерям тепла на испарение, что может снижать температуру воды (Соколова, 1951).

Важным фактором изменения температуры речной воды бассейнового масштаба, является влияние синоптических условий и отдельных воздушных масс на тепловое состояние рек. На реках разного размера оно выражается по-разному: крупные атмосферные вихри, определяя прохождение теплых и холодных воздушных масс, оказывают влияние на температуру воды малых рек, участков крупных и средних рек. Чем больше площадь водосбора, тем больше число воздушных масс, которые оказывают воздействие на тепловое состояние рек. Таким образом, температура воды в малых реках и их бассейнах целиком определяется чаще всего какой-либо одной воздушной массой, тогда как температура средних и крупных рек и различных частей их бассейнов формируется под влиянием совокупности разнородных воздушных масс.

Синоптические факторы определяют температуру воды вследствие облачности и изменения притока Qr днем и ночью. Днем температура воды повышается вследствие интенсивного притока солнечной радиации, а ночью – понижается, так как теплой поток от водной массы к атмосфере преобладает. При наличии сплошной облачности суточный ход температуры воды сильно сглажен по сравнению с ясной погодой. Это связано с регулированием притока радиации облачностью – вода нагревается только за счет рассеянной радиации. Ночью облачность предупреждает и охлаждение водной массы, вследствие усиления парникового эффекта и повышения температуры воздуха, связанного с температурой воды уравнением (2.14).

К бассейновым факторам изменения температуры воды относятся факторы, влияющие на ее величину в бассейнах малых или на участках больших и средних рек. Одним из этих факторов является размер реки. Его влияние тесно связано с воздействием синоптических условий, формирующих тепловой баланс на верхней поверхности воды. При равной скорости теплообмена на границе «вода-воздух» в соответствии с формулой (2.5) изменение температуры воды будет больше в том водном объекте, который имеет меньший объем. Однако, эта простая закономерность требует уточнения.

Объем воды на данном участке реки приблизительно равен произведению средней глубины(h), средней ширины реки (B) и длины участка (l). Удельная (на единицу площади) величина теплообмена с атмосферой при одинаковых синоптических условиях равна для малой и большой рек. Количество тепла, поступающего к объему воды на участке реки за единицу времени, зависит только от удельного теплообмена на поверхности реки и от средней глубины реки. Чем меньше средняя глубина реки, тем быстрее она реагирует на изменение атмосферных условий и, наоборот, чем больше средняя глубина реки, тем изменчивость температуры воды в реке меньше. Большая средняя глубина соответствует и большим расходам воды. Поэтому крупные реки имеют меньшую изменчивость температуры воды за единицу времени, по сравнению с малыми реками. Изменение температуры воды в малой реке за сутки может достигать нескольких градусов (до 90С), а на крупных реках – 1–20С (Соколова, 1951).

На рис. 2.7 приведен график, характеризующий изменение температуры в течение года в близких природных условиях на реках различного размера. Река Емца имеет площадь водосбора 13400 км2 (средняя река), а Онега – 55900 км2 (крупная река). Как видно на графике, весной, в период нагревания, температура воды на р. Емца выше по сравнению с онежской водой, что объясняется относительно более быстрой реакцией вод Емцы на изменение синоптических условий. Аналогичная ситуация и в период охлаждения: изменение температуры воды в р. Емца более интенсивно, чем в р. Онега. В результате температура ее вод оказывается ниже, по сравнению с рекой меньшего размера.

Такая закономерность может нарушаться вследствие впадения боковых притоков. Притоки могут формировать местный сток в других природных условиях, что приводит к их отепляющему или охлаждающему воздействию на водную массу основной реки.

На температуру воды в реках в различные фазы водного режима влияет соотношение источников питания рек. Оно влияет на среднюю температуру воды в русловой сети и на температуру воды ее отдельных участков. Разгрузка подземных вод изменяет температуру воды в реке в зависимости от сезона года. Летом подземные воды имеют температуру относительно более низкую, поэтому они оказывают охлаждающее влияние на температуру воды в реках. Зимой обратная ситуация: подземные воды отепляют речную водную массу.

Пример влияния этого фактора на температуру воды в реках дают реки черноморского побережья между гг. Новороссийск и Батуми. Они могут иметь подземное и дождевое питание. В разные сезоны года подземные воды оказывают как отепляющее (зимой), так и охлаждающее воздействие (лето). В летний период температуры воды вследствие теплообмена с атмосферой нагреваются, в зимний период температура воды этих рек, несмотря на теплообмен с атмосферой и благодаря влиянию грунтовых вод, не опускается ниже 40C.

Реки с существенным ледниковым питанием (Бзыбь, Мзымта, Кодори и Риони) наоборот имеют пониженную температуру. Она не превышает 100С в нижнем течении, а в истоке составляет 0,1–0,30С (Соколова, 1951). Таким образом, ледниковые воды всегда оказывают охлаждающее воздействие на основной объем воды в русле реки.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы