Проектирование тормозной схемы электровоза
где fпр – величина предварительного подъема опорной плиты, м;
где fi – величина статического прогиба рессор, м;
Рцп – давление в тормозном цилиндре порожнего вагона, МПа;
fi = 0,01 Q fo Qi ,(3.11)
fo – гибкость центрального рессорного подв
ешивания вагона, 0,0006225 м/т;
Qi – загрузка вагона в процентном соотношении от полной;
Q – грузоподъемность вагона, т;
Рвр – давление на выходе из воздухораспределителя при полном служебном торможении, МПа.
Результаты расчета представлены в таблице 3.2.
Таблица 3.2 – Расчет давлений в тормозном цилиндре при наличии авторежима
Q,% |
0 |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
100 |
Pтц, МПа |
0,269 |
0,289 |
0,309 |
0,330 |
0,352 |
0,375 |
0,400 |
0,43 |
0,43 |
0,43 |
0,43 |
Принимаем максимальное давление Рмтц = 0,43МПа.
4. Качественная оценка правильности выбора воздушной части тормоза
На основании закона Бойля – Мариотта состояние сжатого воздуха в выбранных емкостях воздушной части тормозной системы до торможения и при торможении аналитически выражается равенством
РзVзр + РоVо = РзрVзр + Рмтц (Vо + πd2тцL/4) ,(4.12)
где Рз – максимальное абсолютное зарядное давление воздухопроводной магистрали, МПа;
Vзр – объем запасного резервуара, м3;
Vо – объем вредного пространства тормозного цилиндра,м3;
Рзр – абсолютное давление воздуха в запасном резервуаре при торможении, МПа;
Рмтц – максимальное абсолютное давление воздуха в тормозном цилиндре, МПа;
dтц – диаметр тормозного цилиндра, м;
L – допустимый ход поршня тормозного цилиндра при торможении, м.
Качественная оценка правильности выбора воздушной части в грузовых поездах производится по условию их неистощимости
Рзр ≥ Рз – ΔРтм ,(4.13)
где ΔРтм = 0,15 МПа – разрядка тормозной магистрали при полном служебном торможении.
0,59 > 0,7 – 0,15 = 0,55.
Так как условие выполняется, то делаем вывод о неистощимости пневматического тормоза.
5. Выбор схемы тормозной рычажной передачи
Рисунок 5.1 – Схема рычажной передачи 8ми-осного грузового вагона: 1 - Горизонтальный рычаг; 2 - Затяжка горизонтальных рычагов; 3 – Тяги; 4 - Горизонтальный балансир; 5 - Вертикальный рычаг; 6 - Затяжка вертикальных рычагов; 7 – Траверса; 8 – Подвески башмака
В рефрижераторных вагонах применяется колодочный тормоз с двухсторонним нажатием. Данная схема эффективна при скоростях движения до 160 км/ч. При более высоких скоростях схема неэффективна. Основным ее недостатком является интенсивный износ колесных пар по профилю катания, а также навары при торможении.
6. Определение допускаемого нажатия тормозной колодки
С целью создания эффективной тормозной системы величина нажатия тормозной колодки на колесо должна обеспечивать реализацию максимальной тормозной силы. Вместе с тем необходимо исключить возможность появления юза при торможении. При условиях сухих и чистых рельсов это положение для колодочного тормоза аналитически выражается уравнением
К·φк = 0,9·Рк·ψк ,(6.1)
где К – допускаемая сила нажатия колодки на колесо, кН;
φк - коэффициент трения тормозной колодки;
0,9 - коэффициент разгрузки задней колесной пары;
Рк - статическая нагрузка на колесо, отнесенная к одной тормозной колодке, кН;
ψк - коэффициент сцепления колеса с рельсом при торможении.
Значения коэффициента трения для стандартных чугунных колодок определяются по следующей эмпирической формуле
|
где V – расчетная скорость движения поезда, исключающая появление юза, м/с. Для композиционных колодок принимаем V=28 м/с.
Коэффициент сцепления зависит от состояния поверхности рельсов и колес, от нагрузки колеса на рельс и скорости движения. Для его определения можно воспользоваться расчетной формулой
ψк = [0,17 – 0,00015 (q – 50)]·ψ(V),(6.3)
где q - статическая осевая нагрузка, кН;
ψ(V) - функция скорости, значение которой в зависимости от типа подвижного состава находят по графику [1].
Статическая осевая нагрузка определяется
q = (T + Q)/m,(6.4)
где T,Q - тара и грузоподъемность вагона, кН;
m - число осей вагона.
Статическая нагрузка на колесо
Рк = (T + Q)/mв ,(6.5)
где mв – число тормозных колодок на вагоне
Рк = (32 + 50)/16 = 51,25 кН,
q = (32 + 50)/4 = 205 кН,
ψ(V) = 0,54
ψк = [0,17 – 0,00015 (205 – 50)]·0,54 = 0,08
Из (6.14) находим
φк = 0,9·51,25·0,08/К = 3,64/К
Решая полученное выражение совместно с (6.5) получим
К = 5 кН.
Полученную допускаемую силу нажатия тормозной колодки проверяем исходя из требований теплового режима трущихся пар
К/Fk <= [ΔРу],(6.6)
где Fk - номинальная площадь трения тормозной колодки, м2;
[ΔРу] - допустимое удельное давление на тормозную колодку, кН/м2;
5/0,029 = 172 кН/м2 < 900 кН/м2
Кдоп = [ΔРу]·Fк(6.20)
Кдоп = 900·0,029 = 26,1 кН.
7. Расчет передаточного числа рычажной передачи вагона
Передаточным числом рычажной передачи называется отношение теоретической величины суммы сил нажатия тормозных колодок вагона к силе давления сжатого воздуха на поршень тормозного цилиндра
n = (Kдоп·mв)/(Ршт·ηрп),(7.1)
где Ршт - усилие по штоку тормозного цилиндра, кН;
ηрп - КПД рычажной передачи, принимаем 0,80.
Величина усилий по штоку тормозного цилиндра определяется
Ршт = πd2тцPтц·ηтц /4 – (F1 + F2 + Lшт·Ж),(7.2)
где ηтц - коэффициент, учитывающий потери на трение поршня о стенки тормозного цилиндра, который равен 0,98;
F1 - усилие оттормаживающей пружины в отпущенном состоянии, 1500-1590 Н, принимаем 1580 Н;
Другие рефераты на тему «Транспорт»:
- Виды топлива, применяемые на автотранспорте
- Замена резьбовых соединений рычагов подвески автомобиля ГАЗ 24 на резинометаллические шарниры
- Оценка условий движения на подходах к перекрестку и программа светофорного регулирования
- Трансмиссия автомобиля УАЗ-31512
- Обзор рынка морских контейнерных перевозок
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск