Оборудование участка железной дороги устройствами автоблокировки
Использование амплитудно-модулированных сигналов обеспечивает надежную защиту приемных устройств от воздействия гармонических и импульсных помех тягового тока, а также от помех, создаваемых токами централизованного электроснабжения вагонов пассажирских поездов.[23]
В принятой структуре построения для БРЦ одного пути достаточно применять сигналы двух несущих частот, например 420 и 480 Гц. Со
стояние БРЦ 1 и 2 контролирует приемники 1П1 и 2П1, принимающие сигналы на несущей частоте 420 Гц и частоте модуляции 8 Гц от генератора 1/2 Г1. Первая цифра в условном наименовании приемника обозначает номер БРЦ, а вторая – тип приемника; П1 воспринимает сигналы с несущей частотой 420 Гц, а П2 – 480 Гц. Состоянием БРЦ 3 и 4 контролирует приемники 3П2 и 4П2, воспринимающие сигналы от генератора 3/4 Г2. В принятой структуре на приемник 2П1 БРЦ 2 мог бы оказать влияние сигнальный ток БРЦ 5, работающий от генератора того же типа Г. Однако приемник 2П1 защищен от опасного влияния генератора 5/6 Г1 из за естественного затухания при прохождении сигнала от генератора 5/6 Г1 к приемнику 2П1 через БРЦ 5, 4 и 3. Аналогично взаимно защищены и другие приемники от генератора, работающих на одинаковых несущих частотах. При всех вариантах приемник данной БРЦ и влияющий генератор, работающий на той несущей частоте, разделены тремя БРЦ. Расчеты показывают, что затухание сигнала при прохождении его через 3 БРЦ составляет примерно 20 дБ. Затухание сигнала от влияющего источника при прохождении его 3 БРЦ составляет примерно 60 дБ. По этому помеха от источника расположенного за три БРЦ от данного приемника, примерно в 100 раз ниже полезного сигнала, поступающий на вход приемника от генератора собственной БРЦ. При не благоприятном соотношении длин БРЦ (длины БРЦ, через которые проходят от влияющего источника, существенно ниже предельных значений) взаимное влияние сигналов от БРЦ, работающих на одинаковых частотах возрастает. В этом случае для исключения взаимного влияния может быть использованы третья несущая частота, например 580 Гц, в дополнении к указанным частотам 420 и 480 Гц.[10]
Занятие и освобождение БРЦ фиксируется не в момент вступления и проследования поездом точек подключения аппаратуры, а на некотором расстоянии от концов БРЦ, характеризующих зоны дополнительного шунтирования lш по приближении и удалении поезда. Наличие этих зон обусловлено отсутствием изолирующих. Например, при приближении поезда к БРЦ 2 за счет поездного шунта напряжение на питающем конце, а значит, и на входе приемника 2П1 снижается. На некотором расстоянии благодаря шунтированию через рельсовую петлю поездным шунтом напряжение на входе приемника снижается до значения, соответствующего отпусканию якоря путевого реле. Так же и срабатывание путевого приемника и возбуждения путевого реле, например 4П2, происходят после удаления поезда на расстояние lш от БРЦ 4. Таким образом тактическая длина БРЦ оказывается больше ее физической длины, определяемой точками подключения аппаратуры, то есть
lфакт = l + 2lш. (3.1)
Для нормальных действия локомотивных устройств АЛС следует обеспечивать нормативный ток локомотивной сигнализации на расстоянии lАЛС равном суммарной длине рельсовой цепи l и зоны дополнительного шунтирования lш, то есть должно выполнятся условия lАЛС = l + lш.
Длина зоны шунтирования зависит от частоты сигнального тока, рабочее напряжение сигнала на входе приемника, сопротивление балласта рельсовой линий, коэффициента возврата путевого приемника, реального сопротивления поездного шунта длины БРЦ. Для железных дорог при частоте сигнального тока 4258 Гц значение зоны шунтирования в условиях эксплуатаций находится в пределах от 40 до 120 м. При повышении частоты сигнального тока, напряжение на входе приемника, сопротивления балласта и сопротивления рельсов длина зоны шунтирования уменьшается, а при уменьшении указанных параметров значение lш возрастает.
В практических условиях эксплуатации на железных дорогах изменение зоны lш в основном обусловлено изменением сопротивлениям балласта, а на линиях метрополитенов – колебанием напряжения источника питания.
Если по каким – либо причинам необходимо получить наименьшую зону lш , то это может быть достигнуто повышением напряжения сигнала на входе приемника до максимально допустимого значения, при котором обеспечиваются все режимы работы БРЦ. [9]
Для исключения ложного срабатывания путевых приемников при случайном объединении рельсовых нитей соседних путей на двухпутных участках железных дорог используют сигналы с четырьмя отличительными признаками. Эти признаки создаются в результате модуляции двух несущих частот 425 и 475 Гц частотами 8 и 12 Гц. Сигналы 425/8 и 475/12 применяют в БРЦ одного пути, а сигналы 425/12 и 475/8 – для БРЦ другого пути двухпутного участка. В числителе указана несущая частота, а в знаменателе – частота модуляции.
В структурной схеме устройств ЦАБ для примерного перегона содержащего 12 БРЦ, демонстрационный лист 2, на каждой станции размещается аппаратура, относящаяся к половине перегона, примыкающей к данной станции. Питание БРЦ осуществляется от генераторов Г1и Г2 сигналов 425/8 и 475/12 соответственно. Каждый генератор питает две смежные БРЦ, расположенные по обе стороны от точки его подключения к рельсовой линии. Генераторы для БРЦ 1-4 расположены на станции Доссор, а для БРЦ 5-10 – на станции Макат. Состояние БРЦ контролируют путевые приёмники П1 и П2, первый из которых воспринимает сигналы 420/8, а второй – 480/12. основную аппаратуру размещают на станциях. Непосредственно у пути размещают лишь пассивные согласующие путевые трансформаторы ПТ, а на линиях с электротягой в необходимых случаях – и дроссель-трансформаторы.
Аппаратура соединяется с путевыми трансформаторами симметричным сигнальным кабелем с парной скруткой жил. Питание двух смежных БРЦ производится по одной паре жил сигнального кабеля. Два приёмника смежных БРЦ также подключают одной парой жил. По ним же передаются кодовые сигналы АЛС от передающих устройств, расположенных на станциях. Приведённая структура построения БРЦ позволяет наиболее рационально использовать передающую аппаратуру БРЦ и сигнальный кабель. При таком же числе рельсовых цепей с изолирующими стыками потребовалось бы в 2 раза больше генераторов и сигнального кабеля.[3]
Контроль перегона, смена направления движения и увязка между станциями обеспечивают по отдельным цепям этого же сигнального кабеля (ССН и У). Кодовые сигналы АЛС передаются в БРЦ с момента занятия её поездом. Кодовые сигналы передаются с питающего или приёмного конца в зависимости от установленного направления движения.
3.2 Разработка принципиальных схем
Устройства централизованной автоблокировки содержат передающую и приёмную аппаратуру, и передающую аппаратуру числовой и частотной систем АЛС. В устройствах АБТЦ применяется следующая аппаратура: путевой генератор с путевым модулятором ПРМ, путевой трансформатор ЛТЦ, фильтр питающего конца ФП8,9, путевой приёмник УПКЦ, путевой генератор ПГ-АЛС, путевой фильтр ФП-АЛС. Последние два блока применяют для передачи сигналов частотной АЛС.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск