Параметры и силы, влияющие на вагон при движении

(5)

где l1 +l2 = L – база вагона;

h – высота центра тяжести вагона с грузом над уровнем рессорного подвешивания

Iy – момент инерции вагона с грузом относительно оси, проходящей в плоскости верха рессор и направленной перпендикулярно оси пути.

Тогда

(6)

Из формулы 7 следует, что чем меньше жесткость рессорного подвешивания с1, чем больше момент инерции кузова Iy и выше центр тяжести h, тем меньше частота собственных колебаний галопирования nгал и тем больше период галопирования Tгал.

Колебания боковой качки могут быть рассмотрены с помощью той же схемы, приняв в ней вместо l1 и l2 величины b1 и b2 и вместо момента инерции кузова вагона Iy (относительно оси y) – момент инерции кузова вагона относительно оси x – Ix

Тогда период колебаний будет равен

Линейные частоты колебаний кузова определяются по формуле:

Тогда

Следовательно, чем больше величина частоты, тем больше плавность хода вагона.

2. Расчет параметров гасителей колебаний

Задан гаситель с постоянной силой трения

где Nтр – нормальная сила (нажатие) в трущейся паре гасителя;

j - коэффициент трения частей пары.

3. Проверка рессорного подвешивания на отсутствие «валкости»

Для определения высоты метоцентра рассмотрим вагон, вес кузова которого G и жесткость рессоры с. Тогда, реакции рессорных комплектов при наклоне кузова на угол q составят:

Момент реакции рессор относительно точки О1

Заменим действие силы R1 и R2 их равнодействующей R, а точку пересечения равнодействующей в наклонной осью вагона назовем метацентром вагона. Момент равнодействующей R относительно точки O1

где hМ – высота метацентра от пола вагона.

Поскольку угол q мал, то tgq»0, т.е. M0=RhMq, где R = R1 + R2 = Q, то приравнивая момент силы R1 и R2 моменту от их равнодействующей R, получим qhMG = 2b2ecq, отсюда

где fст – статический прогиб рессорного подвешивания вагона;

b – половина базы тележки.

Высота метацентра выше центра тяжести вагона более чем на 2 м, следовательно вагон устойчив.

4. Составление дифференциального уравнения вынужденных колебаний подпрыгивания вагона и нахождение аналитического выражения описывающего процесс вынужденных колебаний подпрыгивания вагона

Решение дифференциального уравнения n = 2p/Т является аналитическим выражением процесса вынужденных колебаний подпрыгивания вагона при движении его по регулярным неровностям вида z = hcoswt.

Это решение имеет вид:

где n - скорость движения вагона;

lн – длинна периода неровностей;

2h – высота неровностей;

n - круговая частота собственных колебаний

Для колеса вагона номер i возмущение функции имеет вид:

где li – расстояние от первого до i-го колеса.

Амплитуда вынужденных колебаний подпрыгивания кузова вагона будет иметь вид:

Для заданного вагона

Аналитическое выражение описывающее процесс вынужденных колебаний будет иметь вид:

Для построения графика определяем зависимость z от t

При t=1 сек

Для других значений t

ЧАСТЬ II

1. Расчет динамических боковых и рамных сил при вписывании вагона в кривых участках пути

Наибольшие боковые силы возникают тогда, когда при движении вагона наибольшее допустимое непогашенное ускорение на вагон достигает 0,7 м/с2. Это возможно при минимально допустимом для этой кривой возвышении наружного рельса. Его можно определить используя формулу:

Величина действующей на одну тележку поперечной горизонтальной силы:

где m – масса вагона;

анет – непогашенное поперечное ускорение;

Hв – сила ветра, действующая на вагон и направленная поперек пути

Принимая aнет = 0,8 м/с2, получим

При действии на вагон продольных сил S, которые могут возникнуть, например при рекуперативном напряжении на шкворень тележки действуют дополнительная сила Hторм которая приближенно равна:

Наибольший угол y можно определить по формуле:

Общее усилие на шкворень в этом случае

где S – продольное усилие в поезде;

2k – расстояние между клиновыми отверстиями автосцепок.

Поскольку, в своем движении по кривой тележка непрерывно вращается вокруг полюса поворота, то образующийся от силы H0брт момент относительно точки О уравновешивается направляющим усилием Y (давление гребня набегающего колеса первой оси тележки на боковую поверхность) поперечными силами трения колес по рельсам.

где P – вертикальная нагрузка, передаваемая колесом рельсу;

m - коэффициент трения колесом по рельсу (принимаем m = 0,25).

Уравнение проекций этих сил имеет вид:

Страница:  1  2  3 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы