Математические методы в психологии

Психолог предположил, что в результате научения время решения эквивалентных задач "игры в 5" (т.е. имеющих один и тот же алгоритм решения) будет значимо уменьшаться. Для проверки гипотезы у восьми испытуемых сравнивалось время решения (в минутах) первой и третьей задач. Установите, верно ли предположение исследователя?

№ испытуемого

1

2

3

4

5

6

7

8

1 задача

4

3,5

4,1

5,5

4,6

6

5,1

4,3

2 задача

3

3

3,8

2,1

4,9

5,3

3,1

2,7

Чтобы установить верно ли предположение исследователя о сокращении времени при решении эквивалентных (т.е. имеющих один и тот же алгоритм решения) задач применим Т - критерий Вилкоксона.

Таблица№1

№ испытуемого

Время решения задачи№1

fдо

Время решения задачи№2 fпосле

Разность

(fпосле - fдо)  

Абсолютное значение разности

Ранговый номер разности

1

2

3

4

5

6

7

8

4

3,5

4,1

5,5

4,6

6

5,1

4,3

3

3

3,8

2,1

4,9

5,3

3,1

2,7

-1

0,5

0,3

3,4

0,3

0,7

2

1,6

1

0,5

0,3

3,4

0,3

0,7

2

1,6

5

3

1,5

8

1,5

4

7

6

Сумма

       

36

Сформулируем гипотезу

Н0: Интенсивность сдвигов в сторону уменьшения длительности выполнения эквивалентных задач значительно превышает интенсивность сдвигов в сторону увеличения времени решения.

Cумма рангов равна 36, что соответствует расчетной:

∑ R = N (N+1) /2= 72/2=36

Теперь отметим те сдвиги, которые являются нетипичными, в данном случае - положительными. В табл. №1 эти сдвиги и соответствующие им ранги выделены цветом.

Сумма рангов этих "редких" сдвигов и составляет эмпирическое значение критерия Т:

где Rr - ранговые значения сдвигов с более редким знаком.

T = 1,5

Из таблицы VI приложения 1 определяем критические значения Т для n=8

Tкр {5 (p<0,05) |1 (p<0,01)

Получаем, что Тэмп<Ткр (0,05)

Ответ: Н0 подтверждается (р<0,05). на 5% уровне.

Задание№2

В двух школах района психолог выяснял мнения учителей об организации психологической службы в школе. В первой школе было опрошено 20 учителей, во второй 15. Психолога интересовал вопрос: в какой школе психологическая служба поставлена лучше? Учителя давали ответы по номинативной шкале - нравится (да), не нравится - (нет). Результаты опроса представлены в виде четырехпольной таблицы:

 

1 школа

2 школа

Число учителей ответивших на вопрос утвердительно

15

7

Число учителей, ответивших на вопрос отрицательно

5

8

Для выяснения вопроса о лучшей организации психологической службы в обеих школах по результатам опроса учителей целесообразно полученные данные перевести в проценты, таким образом, мы получим процентное соотношение ответов "Да" "Нет". И так, в первой школе из 100% учителей довольными психологической службой оказались - 75%, недовольными - 25%. Во второй школе процент положительных ответов составил 47% от числа всех опрошенных, отрицательных - 53%

Применим Критерий φ* - угловое преобразование Фишера.

Группы

Утвердительные

ответы

Отрицательные ответы  

Суммы

1-ая школа

15 (75%)

5 (25%)

20

2-ая-школа

7 (46,6%)

8 (53,3%)

15

Суммы

22

13

35

Н0: Доля учителей удовлетворённых психологической службой в первой школе не больше, чем во второй.

Н1: Доля учителей удовлетворённых психологической службой в первой школе больше чем во второй.

По табл. XII определим показатели φ:

φ 1 (75%) = 2,094

φ 2 (46,6%) = 1,503

Теперь подсчитаем эмпирическое значение φ* по формуле:

Из условия задачи n1= 20; n2= 15

φ*эмп = 0,591Х 2,93= 1,73

По Табл. XIII Приложения 1 определяем, какому уровню значимости соответствует φ*эмп= 1,73:

P= 0,04

φ*кр = { 1, 64 (ρ ≤ 0,05) |2,31 (ρ ≤ 0,01)

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Психология»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы