Дидактические игры в процессе формирования математических знаний у детей 4-5 лет
Какое же значение имеет игра? В процессе игры у детей вырабатывается привычка сосредотачиваться, мыслить самостоятельно, развивается внимание, стремление к знаниям. Увлёкшись, дети не замечают, что учатся: познают, запоминают новое, ориентируются в необычных ситуациях, пополняют запас представлений, понятий, развивают фантазию. Даже самые пассивные из детей включаются в игру с огромным желанием
, прилагают все усилия, чтобы не подвести товарищей по игре.
В игре ребенок приобретает новые знания, умения, навыки. Игры, способствующие развитию восприятия, внимания, памяти, мышления, развитию творческих способностей, направлены на умственное развитие дошкольника в целом.
В отличие от других видов деятельности игра содержит цель в самой себе; посторонних и отделенных задач в игре ребенок не ставит и не решает. Игра часто и определяется как деятельность, которая выполняется ради самой себя, посторонних целей и задач не преследует.
Для ребят дошкольного возраста игра имеет исключительное значение: игра для них – учеба, игра для них – труд, игра для них – серьезная форма воспитания. Игра для дошкольников – способ познания окружающего мира. Игра будет являться средством воспитания, если она будет включаться в целостный педагогический процесс. Руководя игрой, организуя жизнь детей в игре, воспитатель воздействует на все стороны развития личности ребенка: на чувства, на сознание, на волю и на поведение в целом.
Однако если для воспитанника цель – в самой игре, то для взрослого, организующего игру, есть и другая цель – развитие детей, усвоение ими определенных знаний, формирование умений, выработка тех или иных качеств личности. В этом, между прочим, одно из основных противоречий игры как средства воспитания: с одной стороны – отсутствие цели в игре, а с другой – игра есть средство целенаправленного формирования личности.
В наибольшей степени это проявляется в так называемых дидактических играх. Характер разрешения этого противоречия и определяет воспитательную ценность игры: если достижение дидактической цели будет осуществлено в игре как деятельности, заключающей цель в самой себе, то воспитательная ее ценность будет наиболее значимой. Если же дидактическая задача решается в игровых действиях, целью которых и для их участников является этой дидактической задачи, то воспитательная ценность игры будет минимальной.
Игра ценна только в том случае, когда она содействует лучшему пониманию математической сущности вопроса, уточнению и формированию математических знаний учащихся. Дидактические игры и игровые упражнения стимулируют общение, поскольку в процессе проведения этих игр взаимоотношения между детьми, ребенком и родителем, ребенком и педагогом начинают носить более непринуждённый и эмоциональный характер.
Свободное и добровольное включение детей в игру: не навязывание игры, а вовлечение в нее детей. Дети должны хорошо понимать смысл и содержание игры, ее правила, идею каждой игровой роли. Смысл игровых действий должен совпадать со смыслом и содержанием поведения в реальных ситуациях с тем, чтобы основной смысл игровых действий переносился в реальную жизнедеятельность. В игре должны руководствоваться принятыми в обществе нормами нравственности, основанными на гуманизме, общечеловеческих ценностях. В игре не должно унижаться достоинство ее участников, в том числе и проигравших.
Таким образом, дидактическая игра – это целенаправленная творческая деятельность, в процессе которой обучаемые глубже и ярче постигают явления окружающей действительности и познают мир.
Методика обучения основам математики посредством дидактических игр и задач для дошкольников
В старшем дошкольном возрасте дети проявляют повышенный интерес к знаковым системам, моделированию, выполнению арифметических действий с числами, к самостоятельности в решении творческих задач и оценке результата. Освоение детьми заданного в программе содержания осуществляется не изолированно, а во взаимосвязи и в контексте других содержательных видов деятельности, таких как природоведческая, изобразительная, конструктивная и т.д.
Программа предусматривает углубление представлений детей о свойствах и отношениях объектов, в основном через игры на классификацию и сериацию, практическую деятельность, направленную на воссоздание, преобразование форм предметов и геометрических фигур. Дети не только пользуются известными им знаками и символами, но и находят способы условного обозначения новых, неизвестных им ранее параметров величин, геометрических фигур, временных и пространственных отношений и т.д.
Отношения равенства и неравенства дети обозначают знаками =, *, зависимости между величинами, числами также выражают в знаках «больше», «меньше» (>, <). Естественно, что в содержании обучения преобладают логические задачи, ведущие к познанию закономерностей, простых алгоритмов.
В ходе освоения чисел педагог способствует осмыслению детьми последовательности чисел и места каждого из них в натуральном ряду. Это выражено в умении детей образовать число больше или меньше заданного, доказать равенство или неравенство группы предметов по числу, находить пропущенное число. Измерение (а не только сосчитывание) рассматривается при этом ведущей практической деятельностью.
Предел освоения детьми чисел (до 10, 20, 100) следует определять в зависимости от возможности освоения детьми предлагаемого им содержания, используемых методик обучения. При этом следует ориентироваться на развитие у детей числовых представлений, а не на формальное усвоение чисел и арифметических действий с ними.
Освоение необходимой для выражения отношений, зависимостей терминологии происходит в интересных ребенку играх, творческих заданиях, практических упражнениях. В условиях игры, на занятиях педагог организует живое, непринужденное общение с детьми, исключающее навязчивые повторения.
В старшем дошкольном возрасте освоение математического содержания направлено прежде всего на развитие познавательных и творческих способностей детей: умение обобщать, сравнивать, выявлять и устанавливать закономерности, связи и отношения,, решать проблемы, выдвигать их, предвидеть результат и ход решения творческой задачи. Для этого следует вовлечь детей в содержательную, активную и развивающую деятельность на занятиях, в самостоятельную игровую и практическую деятельность вне занятий, основанную на самоконтроле и самооценке.
Задачи математического и личностного развития детей старшего дошкольного возраста состоят в воспитании у них умений: устанавливать связь между целью (задачей), осуществлением (процессом) какого-либо действия и результатом; строить простые высказывания о сущности явления, свойства, отношения и т.д.; находить нужный способ выполнения задания, ведущий к результату наиболее экономным путем; активно включаться в коллективную игру, помогать сверстнику в случае необходимости; свободно разговаривать со взрослыми по поводу игр, практических заданий, упражнений, в том числе и придуманных детьми.
Задачи на смекалку, головоломки, занимательные игры, вызывают у дошкольников большой интерес. Дети могут, не отвлекаясь, подолгу упражняться в преобразовании фигур, перекладывая палочки или другие предметы по заданному образцу, по собственному замыслу. В таких занятиях формируются важные качества личности ребенка: самостоятельность, наблюдательность, находчивость, сообразительность, вырабатывается усидчивость, развиваются конструктивные умения.
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения