Особенности обучения младших школьников табличному умножению и делению

Для запоминания таблицы умножения существуют такие приемы как:

– прием счета двойками, тройками, пятерками;

– прием последовательного сложения – основной прием получения результатов табличного умножения. Данный прием связан со смыслом действия умножения как сложения одинаковых слагаемых;

– прием прибавления слагаемого к предыдущему результату (вычитания из предыдущего результата).

– прием взаимосвязанной пары: 2 × 6 × 6 ×2 (перестановка множителей);

– прием запоминания последовательности случаев с ориентиром на возрастание второго множителя;

– прием «порции»;

– прием запоминающегося случая в качестве опорного. Например, 5 × 6 =30, значит 5 ×7 =30+5 =35;

– прием внешней опоры; В качестве опоры используется рисунок или прямоугольная таблица чисел. Детям, которые обладают плохой механической памятью, можно па первых порах предложить использовать клетчатое поле тетради. Обводя на клетчатом поле прямоугольник с заданным количеством клеток в сторонах, ребенок использует эту модель для контроля полученного результата или просто подсчитывает клетки как умеет. Например:

4 ×5 = 20

– прием запоминания таблицы «с конца»;

–пальцевый счет при запоминании таблицы умножения. Например, нужно умножить 6 на 7. Зажимаем пальцы на обеих руках в кулак, а затем на каждой руке отгибаем столько пальцев, на сколько каждый множитель больше, чем пять. На двух руках отогнуто три пальца – это число десятков в искомом числе. На одной руке остались прижатыми к ладони три пальца, на другой – четыре пальца. Эти числа перемножаем 3 ×4=12 и прибавляем к числу имеющихся десятков 30+12= 42. Ответ: 6 ×7=42.

Действие деления рассматривается в начальной школе как действие, обратное умножению. Деление – это обратное умножению математическое действие: нахождение одного из сомножителей по произведению и другому сомножителю. С теоретико–множественной точки зрения смыслу деления соответствует операция разбиения множества на равночисленные подмножества. Таким образом, процесс нахождения результатов действия деления связан с предметными действиями двух видов:

а) разбиение множества на равные части (например, 8 кружков разложили в 4 коробки поровну - раскладывают 8 кружков по одному в 4 коробки, а затем считают, сколько кружков получилось в каждой коробке);

б) разбиение множества на части по сколько – то в каждой части (например, 8 кружков разложили в коробки по 4 штуки – раскладывают 8 кружков по 4 штуки в коробки, а затем считают, сколько получилось коробок; деление по этому принципу в методике называют «деление по содержанию»).

Используя подобные предметные действия и рисунки, дети находят результаты деления.

Выражение вида 12:6 называют частным. Число 12 в этой записи называют делимым, а число 6 – делителем. Запись вида 12:6=2 называют равенством. Число 2 называют значением выражения. Поскольку число 2 в данном случае получено в результат деления, его также называют частным.

В начальной школе действие деления рассматривают как действие обратное умножению. В связи с этим сначала дети знакомятся со случаями деления без остатка в пределах 100 – так называемым табличным делением. С действием деления дети знакомятся после того, как уже выучили наизусть таблицы умножения чисел 2 и 3. На основе знания этих таблиц уже на четвертом уроке после знакомства с делением, составляется первая таблица деления на 2. Для получения ее значений используют предметный рисунок.

2:2=… 8:2=… 14:2=…

4:2=… 10:2=… 16:2=…

6:2=… 12:2=… 18:2=…

Значения частных в этой таблице получают подсчетом элементов рисунка на картинке.

Приемы запоминания табличных случаев деления связаны со способами получения таблицы деления из соответствующих табличных случаев умножения.

– прием, связанный со смыслом действия деления. При небольших значениях делимого и делителя ребенок может либо произвести предметные действия для непосредственного получения результата деления, либо выполнить эти действия мысленно, либо использовать пальцевую модель.

–прием, связанный с правилом взаимосвязи компонентов умножения и деления. В этом случае ребенок ориентируется на запоминание взаимосвязанной тройки случаев, например:

3 ×7=2121:7=3 21:3=7

Если ребенку удается хорошо запомнить один из этих случаев (обычно опорный –это случай умножения) или он может получить его с помощью любого из приемов запоминания таблицы умножения, то, используя правило «если произведение разделить на один из множителей, то получится второй множитель», легко получить второй и третий табличные случаи.

Таким образом, при изучении действия умножения и деления ученикам необходимо знать смысл действия умножения и деления, табличные случаи умножения и деления.

Общая характеристика учебника математики Т.Е. Демидова, С.А. Козлова, А.П. Тонких

Данный курс создан на основе личностно ориентированных, деятельностно ориентированных и культурно ориентированных принципов, сформулированных в образовательной программе «Школа 2100», основной целью которой является формирование функционально грамотной личности , готовой к активной деятельности и непрерывному образованию в современном обществе, владеющей системой математических знаний и умений, позволяющих применять эти знания для решения практических жизненных задач, руководствуясь при этом идейно–нравственными, культурными и этическими принципами, нормами поведения, которые формируются в ходе учебно - воспитательного процесса.

Важнейшей отличительной особенностью данного курса с точки зрения содержания является включение наряду с общепринятыми для начальной школы линиями «Числа и действия над ними», «Текстовые задачи», «Величины», «Элементы геометрии», «Элементы алгебры», ещё и таких содержательных линий, как «Стохастика» и «Занимательные и нестандартные задачи». Кроме того, следует отметить, что предлагаемый курс математики содержит материалы для системной проектной деятельности и работы с жизненными (компетентностными) задачами. Цели обучения в предлагаемом курсе математики в 1–4 классах, сформулированные как линии развития личности ученика средствами предмета:

–уметь использовать математические представления для описания окружающего мира (предметов, процессов, явлений) в количественном и пространственном отношении;

– уметь производить вычисления для принятия решений в различных жизненных ситуациях;

– уметь читать и записывать сведения об окружающем мире на языке математики;

– уметь формировать основы рационального мышления, математической речи и аргументации;

– уметь работать в соответствии с заданными алгоритмами;

– уметь узнавать в объектах окружающего мира известные геометрические формы и работать с ними;

– уметь вести поиск информации (фактов, закономерностей, оснований для упорядочивания), преобразовать её в удобные для изучения и применения формы.

В результате освоения предметного содержания предлагаемого курса математики у учащихся предполагается формирование универсальных учебных действий (познавательных, регулятивных, коммуникативных) позволяющих достигать предметных, метапредметных и личностных результатов. Познавательные: в предлагаемом курсе математики изучаемые определения и правила становятся основой формирования умений выделять признаки и свойства объектов. В процессе вычислений, измерений, поиска решения задач у учеников формируются основные мыслительные операции (анализа, синтеза, классификации, сравнения, аналогии и т.д.), умения различать обоснованные и необоснованные суждения, обосновывать этапы решения учебной задачи, производить анализ и преобразование информации (используя при решении самых разных математических задач простейшие предметные, знаковые, графические модели, таблицы, диаграммы, строя и преобразовывая их в соответствии с содержанием задания). Решая задачи, рассматриваемые в данном курсе, можно выстроить индивидуальные пути работы с математическим содержанием, требующие различного уровня логического мышления. Отличительной особенностью рассматриваемого курса математики является раннее появление (уже в первом классе) содержательного компонента «Элементы логики, комбинаторики, статистики и теории вероятностей», что обусловлено активной пропедевтикой этого компонента в начальной школе. Регулятивные: математическое содержание позволяет развивать и эту группу умений. В процессе работы ребёнок учится самостоятельно определять цель своей деятельности, планировать её, самостоятельно двигаться по заданному плану, оценивать и корректировать полученный результат (такая работа задана самой структурой учебника).

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы