Методика и организация отбора исследуемых для участия в научном эксперименте

1-й вариант. Каждому исследуемому экспериментальной группы подбирают в пару другого, равного по силе, выносливости и быстроте (по схеме 1=1). Вариант наиболее предпочтительный, так как позволяет точнее проследить взаимодействие двигательных качеств, но очень трудный в организационном отношении из-за подбора равноценных исследуемых.

2-й вариант. Каждому исследуемому экспериментальной группы

подбирают в пару несколько таких, из которых один равен ему по силе, второй - по выносливости, третий - по быстроте (например, по силе 1=1, по выносливости 1=3, по быстроте 1=9). Сочетания могут быть самые разнообразные, включая и такие, при которых уравнивание произойдет и на двух и на трех основах.

3-й вариант. Из числа исследуемых, уравненных на первой основе, кому-то не найдется пары для уравнивания на второй или третьей основе. В результате придется или вводить дополнительные лица (разумеется, с соблюдением всех перечисленных требований) или исключать из эксперимента тех, которых невозможно уравнять на трех основах.

Уравнивание на второй и третьей основах представлено в следующей схеме (приведен один из возможных случаев). Ее следует читать как продолжение предыдущей схемы.

Уравнивание

На второй основе на третьей основе

I = 3 I = 9

II = 6 II = 3

III = 4 III ≠

IV ≠

V = 7 V = 2

VI = 9 VI = 4

VII = 5 VII = 6

VIII = 10 VIII = 5

IX ≠

X = 2 X ≠

Выбыли Выбыли

IV, IX, 1, 8 III, X, 7, 10

Таким образом, уравнивание опытных групп более чем на одной основе неизбежно приводит к сокращению числа исследуемых. В нашем примере попытки уравнять исследуемых и по силе и по выносливости привели к потере двух пар; введение же третьего показателя (быстроты) привело к потере еще двух пар. Все это следует предусматривать, определяя количественный состав опытных групп.

Итак, при отборе исследуемых необходимо стремиться к максимальному уравниванию их характеристик. Однако подобное требование нельзя расценивать как доказательство возможности полного уравнивания. Действительно, можно уравнять возраст, пол, в какой-то мере - уровень физической подготовленности и т. и., но нельзя уравнять интеллект человека, его характер, настроение, с которым он пришел на исследование. Таким образом, любой исследователь при комплектовании опытных групп должен руководствоваться формулой: все, что может быть уравнено, должно быть уравнено.

Известно, что любое педагогическое исследование проводится на сравнительно небольшом количестве людей. В то же время выводы делаются применительно ко всем лицам, аналогичным по полу, возрасту, уровню подготовленности и т. п.

Допуская подобный перенос результатов экспериментов, теория исследований использует так называемый закон больших чисел.

В силу этого закона совокупное действие большого числа случайных факторов приводит (при некоторых весьма общих условиях) к результату, почти не зависящему от случая.

Следовательно, с одной стороны, закон больших чисел означает, что закономерности массовых однородных явлений проявляются лишь на достаточно большом количестве лиц (или показателей) и могут быть выражены только в форме средних величин; с другой стороны, при опоре на действие закона больших чисел оказывается возможным освободить от влияния случая (в практически приемлемых пределах) соответствующие статистические показатели.

На объективном действии закона больших чисел и основывается выборочный метод в статистике, при котором изучаются не все единицы той или иной совокупности, а лишь отобранная их часть. При этом обобщенные характеристики отобранной части (выборочной совокупности) распространяются на всю совокупность (генеральную совокупность).

Для установления фактов выборочный метод позволяет проводить вместо сплошного исследования (всего контингента отобранных лиц) несплошное исследование (части этого контингента).

Понятие о сплошном исследовании необходимо принимать как условное, так как истинно сплошное исследование, даже в пределах одного пола и возраста, провести немыслимо.

Выборочный метод отбора исследуемых

Несплошное исследование организуется специально, чтобы при определенных условиях, не охватывая всех единиц изучаемого явления, можно было получить такое количество материалов, которое гарантировало бы наибольшую точность выводов по генеральной совокупности. В силу этого несплошное исследование подчиняется двум положениям: 1) количество изучаемых лиц (показателей) должно быть достаточно большим; 2) многообразные характеристики лиц должны объективно рассеиваться и в выборочной, и в генеральной совокупностях, только тогда материалы исследования будут полностью отражать изучаемое явление.

Из сказанного можно сделать вывод, что одним из основных требований, предъявляемых к выборочному образцу, является обязательность максимального отражения в нем черт генеральной совокупности, или, иначе говоря, выборочная совокупность должна быть представительной - репрезентативной.

Однако полного тождества генеральной и выборочной совокупностей достигнуть на практике не удается. Каждая выборка, как правило, отличается от общей совокупности. Тем не менее степень различий в числовых характеристиках генеральной и выборочной совокупностей поддается измерению. Знание теории ошибок, владение статистической техникой исчисления ошибок в выборочном образце дают возможность выяснить ту ошибку, которая отличает числовые характеристики выборочной и генеральной совокупностей. Вычисление ошибки производится при обработке полученного материала.

При отборе, испытуемых только глубокое знание специфики изучаемого явления поможет избежать появления в генеральной совокупности таких свойств, которые не были предусмотрены при организации выборки.

Выборочное исследование должно быть организовано так, чтобы ни в чем не мог проявиться субъективизм экспериментатора. В противном случае никакая статистическая техника не сможет впоследствии исправить ошибки, допущенные при сборе материала.

Все это лишний раз подчеркивает, насколько важно правильно отобрать исследуемых, чтобы по результатам, полученным при изучении части контингента занимающихся, можно было бы судить о закономерностях физического воспитания, присущих данному контингенту в целом.

Применяя выборочный метод, каждый экспериментатор должен решить две задачи: кого выбрать в качестве исследуемых и сколько их надо выбрать.

Решение 1-й задачи. Выше говорилось о необходимости уравнивания исследуемых по всем характеристикам. Но количество таких «одинаковых» претендентов на участие в эксперименте иногда бывает больше, чем требуется по условиям и возможностям научной работы. Кроме того, исследователям приходится распределять отобранных лиц по отдельным опытным группам.

Решить эту задачу помогают законы математической статистики. Опираясь на них, можно считать, что наибольшей объективностью при отборе исследуемых отличается способ случайной выборки (в педагогике и медицине он называется еще механическим отбором). Он позволяет достичь полной случайности отбора лиц для эксперимента, так как каждый из претендентов имеет совершенно равные возможности попасть в числе исследуемых или не попасть, быть зачисленным в экспериментальную или контрольную группу.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы