Использование элементов ТРИЗ-педагогики в обучении школьников математике
При использовании элементов ТРИЗ-педагогики при изучении школьной математики путем переизобретения знаний вполне возможно, если переизобретать не закономерности, а описывающие их понятия и правила.
Пример 9. Рассмотрим совокупность равенств типа , и т. д., т. е.
таблицу умножения. Из истории арифметики известно, что раньше людям было известно сложение, а уже затем умножение. У операции сложения была проблема, связанная, например, с определением площадей. Необходимо было многократно складывать одинаковые слагаемые. Переизобрести с учащимися операцию умножения можно, применяя к сложению закон развертывания-свертывания (в части свертывания) и принцип объединения. Многократные операции сложения одинаковых слагаемых можно объединить, свернуть в операции умножения.
Пример 10. Когда-то людям были известны только целые числа. Но их оказывалось недостаточно, когда было необходимо измерять доли каких-либо объектов. В результате стихийного применения принципа дробления люди создали идею дробей. Развитие дробных чисел можно рассматривать и дальше. Первые дроби у древних (унция и т. п.) были очень неудобны, особенно при арифметических операциях. Проблема была решена с использованием для записи дробных чисел их предшественников – целых чисел – стихийным применением закона перехода в бисистему. Современная простая дробь – это бисистема из числителя и знаменателя. Смешанные числа – это полисистемы из целой части, числителя и знаменателя. Проблема сложения и вычитания простых дробей с разными знаменателями была решена путем стихийного применения принципа эквипотенциальности (приведение к общему знаменателю). Все же у простых дробей правила выполнения арифметических операций, хотя и достаточно понятны, но не совсем просты, отличаются от правил операций с целыми числами. Проблема была решена стихийным применением к целым числам принципа инверсии. В десятичных дробях вес разрядов справа от запятой (по степеням 10) – отрицательный, в противоположность положительному весу разрядов слева от запятой.
Пример 11. Отрицательные числа получаются из положительных применением принципа инверсии.
Пример 12. Иррациональные числа получаются из рациональных применением принципа непрерывности полезного действия: числа занимают непрерывно всю числовую ось.
Пример 13. Комплексные числа получаются из вещественных применением принципа перехода в другое измерение: от числовой прямой к числовой комплексной плоскости.
Пример 14. Переменные получаются из постоянных применением принципа динамичности.
Пример 15. Функции одной переменной получаются из одиночных переменных по закону перехода в бисистему.
Пример 16. Функции нескольких переменных получаются из одиночных переменных по закону перехода в полисистему.
Пример 17. Создание Ньютоном и Лейбницем интегрального исчисления – классический пример перехода на микроуровень.
Таким образом, можно аналогично рассуждать в отношении других математических объектов, используя метод переизобретения знаний. Использовать данный метод можно на факультативных занятиях. Учащаемся наглядно показывается, как их уровень знакомства с математикой соответствует общим законам развития систем.
Методы технического творчества при обучении школьников математике
В конце первой главы в инструменты ТРИЗ-педагогики мы включили методы мышления, не относящиеся собственно к ТРИЗ. По сравнению классическими инструментами ТРИЗ методы технического творчества лучше отработаны при использовании их в учебном процессе начиная с начальной школы, но об использовании данных методов при обучении школьников математике литературы не встречается, хотя они являются ценным дидактическим материалом.
К основным методам научного творчества можно отнести: метод проб и ошибок; метод морфологического анализа; мозговой штурм; синергетику.
Данные методы достаточно легко можно применять при решении учебных математических задач.
Пример 18. В каком случае произведение двух натуральных чисел дает четное число?
Используем метод проб и ошибок, переберем все возможные варианты четности двух чисел. И сделаем соответствующий вывод. В альтернативу можно показать применение идеального конечно результата ТРИЗ, сформулировав, что произведение данных чисел дало четной число , тогда вывод о необходимости четности хотя бы одного из них достаточно логичен.
При решении многих математических задач при использовании метода проб и ошибок другого математического аппарата рассуждений, учащиеся осознанно усваивают ценность математики.
Пример 19. Укажите способы определения высоты здания без сложных приборов.
Коллективное (групповое) решение этой задачи методом мозгового штурма приводит к разнообразным выводам. Наиболее оптимальное и эффективное из них, как правило, попутно подводит к изучению темы «Подобные треугольники» [76].
Рассмотрим два из возможных вариантов решения. Первый вариант предполагает, что человек AB стоит и смотрит на здание ED (рис. 16). Измерив расстояния AD и AO, зная свою высоту AB, можно рассмотреть подобные треугольники BEC и ОВА, из соотношения сторон которых можно
узнать искомое.
Второй вариант решения предполагает, что человек смотрит из точки О на некоторый предмет AB, высоту которого мы можем измерить, например, палку (рис. 17). Тогда из подобия тех же треугольников, что и в первом варианте с легкостью находится искомое.
Другие контрольные ответы заключается с применением тени, зеркала и построение высотомеров.
Пример 20. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас имеет белые, один черные и один рыжие волосы, но ни у одного из нас нет волос того цвета, на который указывает его фамилия», – заметил черноволосый. «Ты прав», – сказал Белов. Какой цвет волос у художника?
Для решения этой задачи можно воспользоваться морфологическим анализом и составить морфологический ящик, используя который решение становиться более наглядным.
Морфологический ящик
Друзья |
Цвет волос | ||
Белые |
Рыжие |
Черные | |
Белов |
- |
+ |
- |
Рыжов |
- |
- |
+ |
Чернов |
+ |
- |
- |
Другие рефераты на тему «Педагогика»:
- Формирование и представление графических изображений в памяти компьютера
- Особенности усвоения навыка чтения у детей младшего школьного возраста с общим недоразвитием речи
- Основы педагогической науки
- Пути гармонизации социального общения подростка в школе и в семье
- Методика преподавания сольфеджио в музыкальной школе
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения