Использование элементов ТРИЗ-педагогики в обучении школьников математике

При использовании элементов ТРИЗ-педагогики при изучении школьной математики путем переизобретения знаний вполне возможно, если переизобретать не закономерности, а описывающие их понятия и правила.

Пример 9. Рассмотрим совокупность равенств типа , и т. д., т. е.

таблицу умножения. Из истории арифметики известно, что раньше людям было известно сложение, а уже затем умножение. У операции сложения была проблема, связанная, например, с определением площадей. Необходимо было многократно складывать одинаковые слагаемые. Переизобрести с учащимися операцию умножения можно, применяя к сложению закон развертывания-свертывания (в части свертывания) и принцип объединения. Многократные операции сложения одинаковых слагаемых можно объединить, свернуть в операции умножения.

Пример 10. Когда-то людям были известны только целые числа. Но их оказывалось недостаточно, когда было необходимо измерять доли каких-либо объектов. В результате стихийного применения принципа дробления люди создали идею дробей. Развитие дробных чисел можно рассматривать и дальше. Первые дроби у древних (унция и т. п.) были очень неудобны, особенно при арифметических операциях. Проблема была решена с использованием для записи дробных чисел их предшественников – целых чисел – стихийным применением закона перехода в бисистему. Современная простая дробь – это бисистема из числителя и знаменателя. Смешанные числа – это полисистемы из целой части, числителя и знаменателя. Проблема сложения и вычитания простых дробей с разными знаменателями была решена путем стихийного применения принципа эквипотенциальности (приведение к общему знаменателю). Все же у простых дробей правила выполнения арифметических операций, хотя и достаточно понятны, но не совсем просты, отличаются от правил операций с целыми числами. Проблема была решена стихийным применением к целым числам принципа инверсии. В десятичных дробях вес разрядов справа от запятой (по степеням 10) – отрицательный, в противоположность положительному весу разрядов слева от запятой.

Пример 11. Отрицательные числа получаются из положительных применением принципа инверсии.

Пример 12. Иррациональные числа получаются из рациональных применением принципа непрерывности полезного действия: числа занимают непрерывно всю числовую ось.

Пример 13. Комплексные числа получаются из вещественных применением принципа перехода в другое измерение: от числовой прямой к числовой комплексной плоскости.

Пример 14. Переменные получаются из постоянных применением принципа динамичности.

Пример 15. Функции одной переменной получаются из одиночных переменных по закону перехода в бисистему.

Пример 16. Функции нескольких переменных получаются из одиночных переменных по закону перехода в полисистему.

Пример 17. Создание Ньютоном и Лейбницем интегрального исчисления – классический пример перехода на микроуровень.

Таким образом, можно аналогично рассуждать в отношении других математических объектов, используя метод переизобретения знаний. Использовать данный метод можно на факультативных занятиях. Учащаемся наглядно показывается, как их уровень знакомства с математикой соответствует общим законам развития систем.

Методы технического творчества при обучении школьников математике

В конце первой главы в инструменты ТРИЗ-педагогики мы включили методы мышления, не относящиеся собственно к ТРИЗ. По сравнению классическими инструментами ТРИЗ методы технического творчества лучше отработаны при использовании их в учебном процессе начиная с начальной школы, но об использовании данных методов при обучении школьников математике литературы не встречается, хотя они являются ценным дидактическим материалом.

К основным методам научного творчества можно отнести: метод проб и ошибок; метод морфологического анализа; мозговой штурм; синергетику.

Данные методы достаточно легко можно применять при решении учебных математических задач.

Пример 18. В каком случае произведение двух натуральных чисел дает четное число?

Используем метод проб и ошибок, переберем все возможные варианты четности двух чисел. И сделаем соответствующий вывод. В альтернативу можно показать применение идеального конечно результата ТРИЗ, сформулировав, что произведение данных чисел дало четной число , тогда вывод о необходимости четности хотя бы одного из них достаточно логичен.

При решении многих математических задач при использовании метода проб и ошибок другого математического аппарата рассуждений, учащиеся осознанно усваивают ценность математики.

Пример 19. Укажите способы определения высоты здания без сложных приборов.

Коллективное (групповое) решение этой задачи методом мозгового штурма приводит к разнообразным выводам. Наиболее оптимальное и эффективное из них, как правило, попутно подводит к изучению темы «Подобные треугольники» [76].

Рассмотрим два из возможных вариантов решения. Первый вариант предполагает, что человек AB стоит и смотрит на здание ED (рис. 16). Измерив расстояния AD и AO, зная свою высоту AB, можно рассмотреть подобные треугольники BEC и ОВА, из соотношения сторон которых можно

узнать искомое.

Второй вариант решения предполагает, что человек смотрит из точки О на некоторый предмет AB, высоту которого мы можем измерить, например, палку (рис. 17). Тогда из подобия тех же треугольников, что и в первом варианте с легкостью находится искомое.

Другие контрольные ответы заключается с применением тени, зеркала и построение высотомеров.

Пример 20. В кафе встретились три друга: скульптор Белов, скрипач Чернов и художник Рыжов. «Замечательно, что один из нас имеет белые, один черные и один рыжие волосы, но ни у одного из нас нет волос того цвета, на который указывает его фамилия», – заметил черноволосый. «Ты прав», – сказал Белов. Какой цвет волос у художника?

Для решения этой задачи можно воспользоваться морфологическим анализом и составить морфологический ящик, используя который решение становиться более наглядным.

Морфологический ящик

Друзья

Цвет волос

Белые

Рыжие

Черные

Белов

-

+

-

Рыжов

-

-

+

Чернов

+

-

-

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы