Обучение детей дошкольного возраста решению арифметических задач
Сделать задачу – картинку может сам воспитатель. Указанные наглядные пособия способствуют усвоению смысла арифметической задачи и ее структуры.
4.Обучение дошкольников решению задач проходит через ряд взаимосвязанных между собой этапов.
Первый этап – подготовительный. Основная цель этого этапа – организовать систему упражнений по выполнению операций над множествами. Так, подготов
ительный к решению задач на сложение являются упражнения по объединению множеств. Упражнение на выделение части множества проводятся для подготовки детей к решению задач на вычитание.
Учитывая наглядно – действенный и наглядно – образный характер мышления детей, следует оперировать такими множествами, элементами которых являются конкретные предметы. Подобные упражнения проводятся и на выделение части множества. В качестве наглядной основы для понимания отношений между частями и целым могут применяться диаграммы Эйлера – Венна, в которых эти отношения изображают графически.
На втором этапе нужно учить детей составлять задачи и приводить к усвоению их структуры. Детей учат устанавливать связи между данными и искомыми и на этой основе выбирать для решения необходимое арифметическое действие. Приводить к пониманию структуры задачи лучше всего на задачах – драматизациях.
На этом этапе обучения составляются такие задачи, в которых вторым слагаемым или вычитаемым является число 1. Это важно учитывать, чтобы не затруднять детей поиском способов решения задачи. Прибавить или вычесть число 1 они могут на основе имеющихся у них знаний об образовании последующего или предыдущего числа. Текст задачи произносится так, чтобы было четко отделено условие, вопрос и числовые данные. Составленную задачу повторяют двое или трое детей. Воспитатель при этом должен следить, чтобы дети не забывали числовые данные, правильно формулировали вопрос.
При обучении дошкольников составлению задач важно показать, чем отличается задача от рассказа, загадки, подчеркнуть значение и характер вопроса.
Продолжая учить детей составлять задачи, нужно особо подчеркнуть необходимость числовых данных.
Чтобы убедить детей в необходимости наличия не менее двух чисел в задаче, воспитатель намеренно опускает одно из числовых данных. Дети приходят к выводу, что такую задачу решить невозможно, так как в ней не указанно второе число.
На конкретных примерах из жизни дети яснее осознают необходимость иметь два числа в условии задачи, лучше усваивают отношения между величинами, начинают различать известные данные в задаче и искомое неизвестное.
После таких упражнений можно подвести детей к обобщенному пониманию составных частей задачи.
Основными элементами задачи являются условие и вопрос. В условии в явном виде содержаться отношения между числовыми данными и неявном – между данными и искомым. Анализ условия подводит к пониманию известных и к поискам неизвестного. Этот поиск идет в процессе решения задачи. Детям надо объяснить, что решать задачу – это значит понять и рассказать, какие действия нужно выполнить над данными в ней числами, чтобы получить ответ. Таким образом, структура задачи включает четыре компонента: условие, вопрос, решение, ответ. Выяснив структуру задачи, дети легко переходят к выделению в ней отдельных частей. Дошкольников следует поупражнять в повторении простейшей задачи в целом и отдельных ее частей. Можно предложить одним детям повторить условие задачи, а другим поставить в этой задаче вопрос. Формулируя вопрос, дети, как правило, употребляют слова стало, осталось. Следует показать им, что формулировка вопроса в задачах на сложение может быть разной. В вопросе следует употреблять глаголы, отражающие действия по содержанию задачи (прилетели, купили, выросли и др.).
Когда дети научатся правильно формулировать вопрос, можно перейти к следующей задаче этого этапа – научить анализировать задачи, устанавливать отношения между данными и искомым. На этой основе можно уже научиться формулировать и записывать арифметическое действие, пользуясь цифрами и знаками.
Поскольку задача представляет собой единство целого и части, с этой позиции и следует подводить детей к ее анализу.
На основе практических действий ребят составляется содержание задачи. Задача анализируется, выясняется, что известно из задачи. Детям предлагается решить задачу и ответить на ее вопрос.
Обучающее значение приведенных выше задач на сложение и вычитание состоит не только в том, чтобы получить ответ, а в том, чтобы научить анализировать задачу и в результате этого правильно выбрать нужное арифметическое действие.
На втором этапе работы над задачами дети должны: а) научится составлять задачи; б) понимать их отличие от рассказа и загадки; в) понимать структуру задачи; г) уметь анализировать задачи, устанавливать отношения между данными и искомым.
Учить детей формулировать арифметические действия сложения и вычитания – задача третьего этапа.
На этом этапе нужно познакомить детей с арифметическими действиями сложения и вычитания, раскрыть их смысл, научить формулировать их и записывать с помощью цифр и знаков в виде числового примера.
Прежде всего детей надо научить формулировать действие нахождения суммы по двум слагаемым при составлении задачи по конкретным данным.
На основе предложенного наглядного материала составляются одна две задачи, с помощью которых дети продолжают учиться формулировать действия сложения и давать ответ на вопрос.
На первых занятиях словесная формулировка арифметического действия подкрепляется практическими действиями, но постепенно арифметическое действие следует отвлекать от конкретного материала. При формулировке арифметического действия числа не именуются. Спешить с переходом к оперированию отвлеченными числами не следует.
Когда дети усвоят в основном формулировку действия сложения, переходят к формулировке вычитания.
Можно показывать задачи и внешне похожие, но требующие выполнения разных арифметических действий.
На основе анализа данных задач дети приходят к выводу, что хотя в обеих задачах речь идет об одинаковом количестве, но они выполняют разные действия. Вопросы в задачах различны, поэтому различны и арифметические действия, различны ответы.
Такое сопоставление задач, их анализ полезны детям, так как они лучше усваивают как содержание задач, так и смысл арифметического действия, обусловленного содержанием.
Воспитатель не должен мириться с односложными ответами детей. Выполненное арифметическое действие должно быть сформулировано полно и правильно.
Поскольку к моменту обучения решению задач дети уже знакомы с цифрами и знаками +, -, =, следует упражнять их в записи арифметического действия и учить читать запись (3+1=4). (К трем птичкам прибавить одну птичку. Получится четыре птички.). Умение читать запись обеспечивает возможность составления задач по числовому примеру.
Для упражнения детей в распознании записей на сложение и вычитание воспитателю рекомендуется использовать несколько числовых примеров и предлагать детям их прочесть.
Другие рефераты на тему «Педагогика»:
- Совершенствование навыка чтения учащихся с задержкой психического развития
- Проблемы экологического воспитания и развития любви к природе у дошкольников на материале художественной литературы
- Теория воспитания
- Роль коллектива в формировании личности как ведущая идея гуманистической педагогики
- Социально-педагогическая работа по предупреждению и преодолению игровой компьютерной зависимости подростков: инновационный проект
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения