Оператор сдвига в гильбертовом пространстве

Доказательство.

Достаточно проверить выполнение равенства

.

Положим Ах1=у1 и Ах2=у2, в силу линейности А имеем

(*)

По определению обратного оператора А-1у1=х1 и А-1у2=х2, умножим оба равенства соответственно

на и :

.

С другой стороны из равенства (*) следует , следовательно, .

Теорема доказана.

Теорема 4 [3]. (Теорема Банаха об обратном операторе)

Пусть А – линейный ограниченный оператор, взаимно однозначно отображающий банахово пространство Е на банахово пространство Е1. Тогда обратный оператор А-1 ограничен.

Теорема 5 [3]. Пусть Е – банахово пространство, I – тождественный оператор в Е, а А – такой ограниченный линейный оператор, отображающий Е в себя, что . Тогда оператор (I-A)-1 существует, ограничен и представляется в виде .

Доказательство.

Так как , то ряд сходится. А так как для всех , то ряд также сходится. Пространство Е полно, значит, из сходимости ряда вытекает, что сумма ряда представляет собой ограниченный линейный оператор. Для любого n имеем: , переходя к пределу и учитывая, что , получаем , следовательно .

Теорема доказана.

5. Спектр оператора. Резольвента.

Всюду, где речь идет о спектре оператора, считаем, что оператор действует в комплексном пространстве.

В теории операторов и ее применениях первостепенную роль играет понятие спектра оператора. Рассмотрим это понятие сначала применительно к операторам в конечномерном пространстве.

Пусть А – линейный оператор в n-мерном пространстве Еn . Число называется собственным значением оператора А , если уравнениеимеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения регулярными.

Иначе говоря, есть регулярная точка, если оператор обратим. При этом оператор -1 , как и любой оператор в конечномерном пространстве, ограничен, поэтому в конечномерном пространстве существует две возможности:

1) уравнение имеет ненулевое решение, т. е. есть собственное значение для А , оператор -1 при этом не существует;

2) существует ограниченный оператор -1, т.е. есть регулярная точка.

В бесконечномерном пространстве существует третья возможность:

3) оператор -1 существует, т.е. уравнение имеет лишь нулевое решение, но этот оператор не ограничен.

Введем следующую терминологию. Число мы назовем регулярным для оператора А, действующего в (комплексном) линейном нормированном пространстве Е, если оператор -1 , называемый резольвентой оператора А , определен на всем Е и непрерывен. Совокупность всех остальных значений называется спектром оператора А . Спектру принадлежат все собственные значения оператора А, так как если х=0 при некотором , то -1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, т.е. совокупность тех , для которых -1 существует, но не непрерывен, называется непрерывным спектром. Итак, любое значение является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.

Теорема 6 [3]. Если А –ограниченный линейный оператор в банаховом пространстве и , то – регулярная точка.

Доказательство.

Так как, очевидно , то . При этот ряд сходится (теорема 4), т.е. оператор имеет ограниченный обратный. Иначе говоря, спектр оператора А содержится в круге радиуса с центром в нуле.

Теорема доказана.

Пример. В пространстве функций, непрерывных на отрезке , рассмотрим оператор А, определяемый формулой Аx(t)=M(t)x(t) , где M(t)– фиксированная непрерывная функция. Возьмем произвольное число , тогда , а .

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы