Оператор сдвига в гильбертовом пространстве
Рассмотрим теперь оператор взвешенного сдвига с весами . Его область определения – не все пространство , а только те последовательности , дл
я которых сходится ряд . При этом
. Таким образом, в пространстве А оператору сдвига соответствует оператор дифференцирования.
Часть 2. Нестандартное расширение оператора сдвига
1. Нестандартное расширение поля действительных чисел
Поле R действительных чисел является расширением поля рациональных чисел с помощью определенной конструкции. Например, можно рассматривать действительные числа как классы фундаментальных последовательностей рациональных чисел.
Существует некоторая конструкция и для расширения поля R. При этом получается новое поле с линейным порядком, но без выполнения аксиомы Архимеда: . В новом поле существуют положительные элементы, меньшие любой дроби , где . Такие элементы называются бесконечно малыми. Также существуют положительные элементы, большие любого , они называются бесконечно большими. Это поле называется нестандартным расширением поля действительных чисел и обозначается *R.
Та же конструкция (которую мы не будем здесь описывать), дает расширение любого множества, построенного на основании поля действительных чисел, например, булеана , или прямого произведения . Поскольку отображение можно рассматривать как подмножество , то получаем также расширения всех числовых отображений. Всю полученную совокупность множеств называют нестандартным универсумом. На основании нестандартного универсума можно построить теорию, аналогичную математическому анализу, или нестандартный математический анализ.
Мы перечислим без доказательства некоторые необходимые в дальнейшем утверждения нестандартного анализа.
Принцип переноса
Если в стандартной теории верно некоторое утверждение, записанное логической формулой с конечным числом логических символов, то аналогичное утверждение верно и в нестандартном универсуме и наоборот.
Пусть дано бинарное отношение . Отношение называется направленным, если для любого конечного набора элементов существует элемент , который находится в отношении со всеми элементами данного набора.
Принцип направленности. Пусть дано направленное отношение . Тогда во множестве *В существует элемент , находящийся в отношении со всеми элементами множества А:
Пример. Выведем из принципа направленности существование бесконечно большого числа в *R. Возьмем прямое произведение и на нем обычное отношение порядка: элементы x и y находятся в отношении , если . По принципу направленности: , что и означает, что в расширении существует элемент, который больше любого стандартного действительного числа, т. е. бесконечно большое число.
Теорема 10 [2]. Пусть - стандартная последовательность. Тогда . То есть число является пределом стандартной последовательности тогда и только тогда, когда для расширенной последовательности все члены с гипернатуральными номерами бесконечно близки к b.
(Соотношение , , означает, что – бесконечно малое число).
Доказательство.
1) Пусть , тогда по определению предела стандартной последовательности выполняется условие . Применим принцип переноса: . Но все бесконечно большие номера будут больше n0 , поэтому при любом стандартном положительном для любого бесконечного номера выполняется неравенство , что и означает .
2) Пусть . Возьмем стандартное ε>0 , тогда верно утверждение: . По принципу переноса такое же утверждение верно и в стандартном универсуме, следовательно, , что и требовалось доказать.
Множества, входящие в нестандартный универсум, называются внутренними. Это множества, которые являются элементами расширения булеана какого-то стандартного множества. Рассмотрим множества, являющиеся элементами , где – булеан . Для всех множеств из выполняется утверждение: если множество ограничено сверху, то оно имеет точную верхнюю грань (аксиома непрерывности). И определение ограниченности сверху, и определение точной нижней грани можно записать формулой с конечным числом символов, поэтому к данному утверждению применим принцип переноса. Значит, если множество ограничено сверху некоторым гипердействительным числом, то оно имеет точную верхнюю грань в , которую также будем обозначать .
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах