Оператор сдвига в гильбертовом пространстве

Теорема 11. Пусть имеется внутреннее множество А*R, причем . Тогда .

Доказательство. Очевидно, данное множество ограничено сверху, например, числом . Пусть М=sup А. Предположим от противного: пусть условие не выполняется, значит, положительное число не бесконечно малое. Значит, существует такое стандартное положительное число , что . Отсюда следует, что . А так как для любого число бесконечно малое, то , следовательно, М не является точной верхней гранью множества А, и предположение не верно.

2. Расширение пространств и

Рассмотрим следующие пространства:

1) l2 – пространство односторонних последовательностей комплексных чисел с натуральной нумерацией, для которых ряд - сходящийся.

2)l2(-∞;∞) – пространство двусторонних последовательностей комплексных чисел с нумерацией целыми числами, для которых соответственно ряд - сходящийся.

Соответственно, обозначим через *l2 нестандартное расширение пространства l2, которое также является линейным пространством над полем , наделенным скалярным произведением.

Определим, какие последовательности гиперкомплексных чисел будет содержать пространство *l2.

Так как по определению l2 ={{xi}/CR, nN: ≤ C}, то по принципу переноса

*l2={{xi}i*N / С*R, ν*N: ≤С} (*)

Т.е. в l2 входят гиперкомплексные последовательности с гипернатуральной нумерацией, удовлетворяющие условию (*). Аналогично, в *l2(-,) будут последовательности с гиперцелой нумерацией, члены которых также *С, удовлетворяющие аналогичному (*) условию

*-,)={{xi }/ С*R, ν: ≤С}.

Естественным образом в *l2 можно ввести норму: , но в отличие от нормы в l2, в *l2 норма может принимать также и бесконечные значения.

Докажем, что для расширений стандартных последовательностей .

Возьмем стандартную последовательность {xi}=x в пространстве l2 с нормой и любое стандартное . Воспользуемся теоремой 1: . Из этого утверждения следует, что верно следующее утверждение: , т.е. для любого стандартного число является верхней границей для множества всех сумм вида (1).

Обозначим М= (2)

Из предыдущего следует, что . С другой стороны, так как М, то ]. Но , значит, для любого стандартного , следовательно, М, или , что и требовалось доказать.

3. Операторы сдвига в нестандартном расширении пространства последовательностей

В дальнейшем Н – гильбертово пространство, – пространство всех линейных ограниченных операторов в Н.

Для линейных операторов в нестандартных пространствах можно ввести аналоги основных понятий теории операторов: ограниченности, нормы, спектра. При этом можно рассматривать различные пространства операторов: например, – множество всех расширений операторов из пространства ; – множество всех линейных операторов , имеющих конечную норму, т. е. удовлетворяющих условию ; *(L(H)) – расширение пространства всех линейных ограниченных операторов в Н.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы