Математический анализ
Интерполяционные многочлены Ньютона и Лагранжа совпадают.
Проведем проверку вычислений, подставив x=0.8 в интерполяционный многочлен Ньютона, получим y1=0.604
Задача 7.<
/b>
Вывести выражения для вычисления второй производной в точке x=x3 в виде функций:
где ∆ng(0) и g(xn) для n = 0,1,…,5 соответственно значения разностей в точке x = x0 и ординаты g(xn) = gn из задачи N2. Значения производной вычисленные по выведенным формулам, сравнить с вычисленным значением производной, найденной путем дифференцирования интерполяционного многочлена G(x):
Решение
Для вычисления производной воспользуемся оператором
Выражение для вычисления производной в точке x0 имеет вид:
Для того, чтобы преобразовать его к выражению для вычисления производной в точке x3, применим оператор сдвига:
∆5y0 = -y0 + 5y1 – 10y2 + 10y3 – 5y4 + y5
∆4y0 = y0 - 4y1 + 6y2 - 4y3 + y4
∆3y0 = -y0 + 3y1 – 3y2 + y3
∆2y0 = y0 - 2y1 + y2
Подставим эти значения в функцию:
Сравним это значение с вычисленным значением производной путем дифференцирования интерполяционного многочлена G(x):
при x3 = 1.8
Значения производной равны, следовательно, вычисления сделаны верно.
Задача 8
Методом наименьших квадратов для таблично заданной g(x) получить аппроксимирующие степенные полиномы нулевой, первой, второй и третьей степеней (Pi(x), i = 0, 1, 2, 3) и изобразить их на одном графике.
Решение.
Составим таблицу степеней x и xy
i |
x |
y |
x2 |
x3 |
x4 |
x5 |
x6 |
xy |
x2y |
x3y |
1 |
0.3 |
-0.02 |
0.09 |
0.027 |
0.0081 |
0.00243 |
0.000728999 |
-0.006 |
-0.0018 |
-0.00054 |
1 |
0.8 |
0.604 |
0.64 |
0.512 |
0.4096 |
0.32768 |
0.262144 |
0.4832 |
0.38656 |
0.309247 |
1 |
1.3 |
0.292 |
1.69 |
2.197 |
2.8561 |
3.71293 |
4.8268 |
0.3796 |
0.493479 |
0.641523 |
1 |
1.8 |
-0.512 |
3.24 |
5.832 |
10.4976 |
18.8956 |
34.0122 |
-0.9216 |
-1.65888 |
-2.98598 |
1 |
2.3 |
-1.284 |
5.29 |
12.167 |
27.9840 |
64.3634 |
148.035 |
-2.9532 |
-6.79236 |
-15.6224 |
1 |
2.8 |
-2.04 |
7.84 |
21.952 |
61.4656 |
172.103 |
481.89 |
-5.712 |
-15.9936 |
-44.782 |
6 |
9.3 |
-2.96 |
18.79 |
42.687 |
103.22 |
259.405 |
669.026 |
-8.73 |
-23.5666 |
-62.4401 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах