Математический анализ

Используем степенное представление интерполяционного многочлена Лагранжа из задачи 6

Для перехода к интегралу с канонической формой используем линейное преобразование: x = α + βt.

Составим систему уравнений:

Подставив x = 1.05 + 0.75t, получим многочлен Лагранжа от переменной t:

L (t) = 0.24975t3 - 0.80325t2 - 0.49575t + 0.537253

Учитывая, что dx = βdt, получим:

Применим квадратурную формулу, полученную в задаче №10

Для сравнения вычислим аналитически значение интеграла:

Так как результаты совпали, значит, вычисления произведены верно.

Задача 12

Оценить погрешность определенного интеграла от функции sin(x) в пределах [0,2/3π] по квадратурной формуле наивысшей алгебраической степени точности, полученной в задаче № 10в, по сравнению с аналитически точным. Проделать то же самое над усеченным степенным рядом, представляющим sin(x), в который x входит со степенью не выше третьей.

Решение

Перейдем от пределов [0,2/3 π] к пределу [-1,1]: для этого воспользуемся линейным преобразованием x= α + βt . Составить систему

Учитывая, что dx = βdt, получим:

Применим квадратурную формулу:

Вычислим аналитически:

Найдем погрешность вычисления:

Проделаем те же операции над усеченным степенным рядом, представляющем sin(x):

Перейдем от пределов [0; 2π/3] к пределам [-1; 1], для этого используем линейное преобразование x = α +βt. Составим систему уравнений:

Учитывая, что dx = βdt, получим

Применим квадратурную формулу, получим

Найдем погрешность вычисления

Задача 14

Степенными полиномами Чебышева Ti относительно переменной x (|x| < 1) являются решениями линейного разностного уравнения второго порядка:

Ti+2 - 2x Ti+1 + Ti = 0,

с начальными условиями T0 = 1 и T1 = x.

Найти аналитическое выражение и вычислить значения полинома Чебышева i-й степени, если и i = 4. Проверить вычисления непосредственно по заданной рекуррентной формуле. Найти положение нулей и экстремумов у многочленов Чебышева в общем виде и для заданных выше x и i. Оценить модуль максимально возможного значения полинома в точках экстремумов.

Решение.

Исходя из того, что

xi = |yi| надо найти T4 т.е. для i = 4

Из Ti+2 - 2xTi+1 + Ti = 0 следует, что

T2 = 2xT1 - T0

T3 = 2xT2 - T1 = 2x(2xT1 - T0) - T1

T4 = 2xT3 - T2 = 2x(2x(2xT1 - T0) - T1) - 2xT1 + T0 = 8x3T1 - 4x2T0 - 4xT1 + T0

Подставим значение T0 = 1 и T1 = x

T4 = 8x4 - 4x2 - 4x2 + 1 = 8x4 - 8x2 + 1

Найдем значения x:

T4 = 0.99980

Проверим по заданной рекуррентной формуле:

T2 = 2·0.00490·0.00490 - 1 = -0.9999

T3 = 2·0.00490·(-0.9999) - 0.00490 = -0.01469

T4 = 2·0.00490·(-0.01469) + 0.9999 = 0.99980

Нули функции находятся, как решения биквадратного уравнения:

8x4 - 8x2 + 1 = 0, где

x1 = 0.9238795

x2 = -0.9238795

x3 = 0.3826834

x4 = -0.3826834

Чтобы найти экстремумы найдем

Задача 16

Выравнивание по всей длине с течением времени температуры T(x, t) на тонком однородном хорошо теплоизолированном стержне описывается дифференциальным уравнением в частных производных с начальным распределением температуры (в градусах Цельсия) по длине стержня в 6 равномерно расположенных с шагом h точках.

T(x0, 0) = T0, T(x1, 0) = T1, …, T(x5, 0) = T5; (Ti = 100·yi ˚C).

На концах стержня в точках x-1 и x6 удерживается нулевая температура.

Применяя конечно-разностное представление производных по пространственной переменной x, свести уравнение в частных производных к системе дифференциальных уравнений в обыкновенных производных относительно температуры T.

Решение.

Получаем систему диф. уравнений:

Учитывая начальные условия, получим систему уравнений:

Задача 17.

Используя метод Ньютона-Рафсона, найти с относительной погрешностью в одну миллионную нуль многочлена Чебышева Ti(x), полученного в задаче 14. В качестве начального приближения к корню взять

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы