Аффинные преобразования евклидовой плоскости в сопряжённых комплексных координатах

Примем без доказательства следующую теорему [1]: если λ – собственное действительное число аффинного преобразования, то множество точек, каждая из которых делит в отношении отрезок, соединяющий точку с её прообразом, есть двойная прямая этого преобразования.

Рис. 3

Очевидно, что прямые MM’ и NN’ (рис. 3) являются двойными прямыми и λ2– действительное число, то точка Р делит отрезок MM’ в отношении , то есть . Число =δ называется коэффициентом сжатия. Если а – действительное число, то направление сжатия перпендикулярно его оси и сжатие называется прямым (ортогональным) сжатием.

Рассмотрим частный случай сжатия – косую симметрию [1]. Это инволютивное преобразование, то есть оно тождественно преобразованию, обратному ему. Преобразование, обратное (24), имеет формулу:

(25)

Оно имеет ту же ось, что и (24). Равенство преобразований (24) и (25) имеет место тогда и только тогда, когда , откуда , то есть а – чисто мнимое число. Таким образом, формулой (24) при условии задаётся косая симметрия с действительной осью. В этом случае коэффициент сжатия равен , следовательно, ось косой симметрии делит пополам каждый отрезок, соединяющий соответственные точки. Косая симметрия – аффинное преобразование второго рода, так как его определитель отрицателен.

Если а=0, получаем осевую симметрию относительно действительной оси. Осевая симметрия – аффинное преобразование также второго рода ().

2.3. Сдвиг

Выясним, как перемещается по плоскости точка при сдвиге (рис.4). Рассмотрим равенство (22), возьмём модули обеих частей этого равенства

(26)

и посмотрим, чем является каждый модуль в (26).

Рис. 4

- это расстояние от точки М(z) до её образа M’(z’) при аффинном преобразовании. - это модуль постоянного вектора, перпендикулярного направлению сдвига, а - это расстояние от М(z) до точки с координатой, сопряжённой z, равное удвоенному расстоянию от точки M(z) до действительной оси Ох.

Преобразуем правую часть (26): , (27) тогда из (22) и (27) следует, что при сдвиге каждая точка M(z) смещается параллельно его оси на расстояние , пропорциональное расстоянию от этой точки до действительной оси. Коэффициент пропорциональности этих расстояний называется коэффициентом сдвига.

Найдём собственные числа преобразования сдвига из уравнения, составленного аналогично тому, как составляли для сжатия: , откуда найдём . Значит, преобразование сдвига имеет только один инвариантный пучок параллельных прямых, параллельных оси сдвига.

Определитель преобразования сдвига строго больше нуля, поэтому сдвиг – аффинное преобразование первого рода.

§3. Эллиптический поворот

Эллипс – это образ окружности при аффинном преобразовании. [1]

Рассмотрим ортогональное сжатие g к действительной оси.

Его задают условия: (28)

а обратное к нему аффинное преобразование g-1 имеет формулу: , где , откуда в силу (28) обратное преобразование имеет вид: (29)

При ортогональном сжатии окружность перейдёт в эллипс (рис. 5). Коэффициент рассматриваемого сжатия равен , тогда . и называются большой и малой осями эллипса при . Найдём уравнение этого эллипса. Для этого в уравнении окружности заменим z на правую часть (29), получим: , тогда . Преобразовав данное равенство, получим: , откуда получаем уравнение эллипса .

Рассмотрим две произвольные точки окружности N и N1. Точку N можно перевести в точку N1 поворотом h на некоторый угол вокруг точки О: , где , , .

Y

P N1

N

M

K M1

C O D X

Т

Q

Рис. 5

Пусть точки М и М1 – образы точек соответственно N и N1 при ортогональном сжатии g. Тогда точку М можем перевести в точку М1 следующим образом:

1) (преобразование, обратное ортогональному сжатию);

2) (поворот вокруг точки О на угол );

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы