Аффинные преобразования евклидовой плоскости в сопряжённых комплексных координатах
Предисловие
Целью данной работы является рассмотрение и изучение аффинных преобразований евклидовой плоскости в сопряжённых комплексных координатах.
Теория аффинных преобразований впервые была рассмотрена Дарбу. В данной работе эта теория изложена методом комплексных чисел.
В работе рассмотрена общая теория для всех аффинных преобразований евклидовой плоскост
и в сопряжённых комплексных координатах, а также такие частные виды аффинных преобразований, как подобие, родство, эллиптический поворот, параболический поворот. Первое из них имеет две разновидности – подобия первого и второго рода, и теория для него разработана Скопецом З.А. совместно с Понариным Я.П. Родство – аффинное преобразование, имеющее прямую неподвижных точек, у которого есть частные виды, также рассмотренные в работе. Теория этого аффинного преобразования для комплексных чисел разработана Понариным Я.П. Эллиптический и параболический повороты – это эквиаффинные преобразования, являющиеся композицией других аффинных преобразований. Они также определены научным руководителем.
Для каждого из четырёх рассмотренных аффинных преобразований и частных видов некоторых из них получены координатные формулы в сопряжённых комплексных координатах, изучены их простейшие свойства.
Глава I. Теория аффинных преобразований в сопряжённых комплексных координатах
§1. Определение и формула аффинного преобразования в сопряжённых комплексных координатах
1.1. Определение аффинного преобразования
Введём определение аффинного преобразования евклидовой плоскости в сопряжённых комплексных координатах.
Преобразование евклидовой плоскости называется аффинным, если оно отображает каждую прямую на прямую. [1]
1.2. Формула аффинного преобразования
Мы хотим построить теорию аффинных преобразований с помощью комплексных чисел. Но для этого нужно иметь формулу аффинного преобразования, то есть выражение комплексной координаты z’ образа данной точки M(z) через координату z этой точки М.
Известно, что аффинное преобразование плоскости в аффинных (и в частности, в прямоугольных декартовых) координатах имеет формулы:
где (1)
Так как хотим получить формулу аффинного преобразования в сопряжённых комплексных координатах, то нужно получить выражение комплексной координаты z’=x’+iy’ точки M’(z’) через комплексную координату её образа z=x+iy точки M(z): в выражение z’ подставим вместо x’ и y’ их выражения из формул (1) : , раскрыв скобки и приведя подобные слагаемые в правой части этого равенства, получим . Теперь произведём тождественное преобразование над коэффициентами при x и iy:
Сгруппировав коэффициенты при x и iy, получаем следующее:
. Введя обозначения , , и учитывая, что и , имеем выражение комплексной координаты z’ точки M’ через комплексную координату её образа z точки M: . Осталось найти определитель этого преобразования. После некоторых преобразований определитель примет вид: , откуда, воспользовавшись введёнными обозначениями коэффициентов аффинного преобразования, имеем: . Таким образом, формула аффинного преобразования в сопряжённых комплексных координатах имеет вид:
, где (2)
§2. Уравнение образа прямой при аффинном преобразовании
Как известно из определения аффинного преобразования, прямая переходит на прямую. Возьмём уравнение прямой , где . (3)
Любая точка M(z), принадлежащая этой прямой, при аффинном преобразовании (2) перейдёт в некоторую точку M’(z’), комплексная координата которой . Выразим из этого равенства и сопряжённого к нему : откуда получаем , то есть
, где . (4)
Это формула преобразования, обратного аффинному преобразованию (2).
Но вернёмся к нашим рассуждениям и подставим в (3) выражение z через z’ и в результате чего получим следующее равенство :
. Теперь раскроем скобки и сгруппируем множители перед z’ и , а оставшиеся слагаемые будем считать свободным членом, получим уравнение образа прямой:
. (5)
Очевидно, что это уравнение прямой: коэффициенты при z’ и сопряжены, а свободный член является действительным числом. Таким образом, получили уравнение образа прямой при аффинном преобразовании (2).
§ 3. Формула обратного преобразования
В предыдущем параграфе нами была найдена формула (4) преобразования, обратного аффинному преобразованию (2). Покажем, что данное преобразование также является аффинным. Для этого достаточно доказать, что его определитель не равен нулю.
Рассмотрим определитель преобразования (4), он равен: , приведём к общему знаменателю и сократим на общий множитель, получим: , где , следовательно, определитель обратного преобразования (4) находится в следующей зависимости с определителем преобразования (2): и он не равен нулю. Следовательно, обратное преобразование (4) также является аффинным, что и требовалось доказать.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах