Применение интегрированных АСУ для ТЭС
Каждый дренаж снабжают арматурой и специальными устройствами, позволяющими ему работать в трех характерных режимах.
Прежде всего, дренаж может работать «на воронку»: для этого открывают вентили 2 и 3 и образующийся конденсат сбрасывают в канализацию, Такой режим используется на первых этапах прогрева паропровода, когда конденсат загрязнен окислами железа, образовавшимися во время простоя ту
рбины.
После достаточной промывки паропровода осуществляется постепенный перевод дренажа «с воронки» на расширитель (в результате открытия вентиля 7, обводного вентиля 6 конденсатоотводчика и закрытия вентиля 3 «на воронку»), В расширителе поддерживается пониженное давление, поэтому происходит частичное вскипание дренажного конденсата. Образующийся пар используется в цикле, а конденсат направляется в дренажный бак и затем дренажным насосом подается в деаэратор. Аналогичным образом работает дренаж и при окончании конденсации, когда прогрев паропровода ведется уже пролетным паром.
После полного прогрева паропровода такие постоянные дренажи закрываются. Когда дренаж подсоединен к полостям, где возможно скопление конденсата при работе турбины или коротких остановках, дренаж оставляют в работе, однако осуществляют его через вентили 4 и 5 и конденсатоотводчик (конденсационный горшок) - устройство, поддерживающее определенный уровень конденсата в дренажной линии и не допускающее ее переполнения Обводной вентиль конденсатоотводчика при этом закрывают.
Питательные установки служат, для подачи питательной воды в котел из баков деаэратора через систему подогревателей высокого давления. Запас потенциальной энергии, приобретенной водой в питательном насосе, в дальнейшем используется для совершения работы в турбине.
Питательный насос может быть отнесен к основному оборудованию наряду с котлом, паровой турбиной и конденсационной установкой. Выход из строя всех питательных насосов не только влечет за собой прекращение работы, но и может вызвать серьезную аварию котла.
Условия работы питательных насосов исключительны тяжелы. В всасывающий патрубок насоса поступает питательная вода из деаэратора, в котором она имеет температуру насыщения. Поэтому для бескавитационной работы насоса необходим значительный подбор, который создают размещением деаэратора выше насоса. Это удорожает здание электростанции. Тем не менее, такая мера часто оказывается недостаточной и приходится прибегать к установке предвключенных (бустерных) насосов для создания гарантированного подпора на входе в основной питательный насос.
Кроме того, питательный насос перекачивает воду, температура которой 100-170 °С, а давление на выходе из насоса энергоблоков сверхкритического давления достигает 35МПа. Конструкция питательного насоса для надежной работы в этих условиях получается сложной.
Рисунок 6 – Структурная схема регулирования давления воды в водяных камерах
Регулирование давления воды в системе турбоагрегатов необходимо для обеспечения работы котлоагрегата рабочей жидкостью. Рабочее давление в системе создается насосами, перекачивающими рабочую жидкость с различных уровней системы в целом.
Состояние системы уплотнения характеризуется давлением в уравнительном коллекторе. При изменении режима работы давление в уравнительном коллекторе изменяется, так как в одних внутренних камерах концевых уплотнений давление выше, чем заданное в коллекторе, а в других ниже.
Таким образом, между коллектором и насосами имеются потоки пара (направленность их определяется давлениями в соединённых паровых емкостях), которые являются возмущающими для коллектора, приводящими к изменению давления пара в нём. Заданное давление в коллекторе обеспечивается подводом в него пара по трубопроводу через регулирующий клапан или посредством сброса избытка пара из него в конденсатор. Регулятор измеряет давление вода в водяном баке и при необходимости перемещает клапан, обеспечивая подвод вода к картеру или сброс его избытков в водосьемник.
Внутренние перекачивающие органы, резервуар с водом, вентили и краны и соединяющие их трубопроводы можно рассматривать как одноёмкостный объект регулирования.
Негативное влияние на работу водяной системы, а как следствие и на работу всей турбины, оказывает утечка вода через уплотнения, которая является возмущающим фактором. Она вызывает в системе уплотнений отклонение давления от нормы и увеличивает расход рабочей жидкости.
За работой водяной системы необходимо следить особенно внимательно.
Процессы, происходящие в турбине (К-500-65/3000) при номинальной нагрузке:
Начальные параметры рабочей жидкости:
температура t = 280.4 град С
давление P=6.59 МПа;
удельная энтальпия i0=2770 кДж/кг. Водо поступает в цилиндр высокого давления насоса, на выходе из которого пар имеет следующие параметры:
давление P=0.348 МПа;
удельная энтальпия i1=2400 кДж/кг
В существующем большом разнообразии датчиков одной из подходящих для системы регулирования давления вода в камерах уплотнений является группа датчиков давления Метран-55.
Рис. Датчики давления Метран-55
КодОКП42 1200
• Измеряемые среды:
жидкость, пар, газ, в т.ч. газообразный кислород и кислородосодержащие газовые смеси при давлении не выше 1,6 МПа, неагрессивные к материалам контактирующих деталей (сталь 12Х18Н10Т и сплав ВТ-9)
• Исполнения:
обыкновенное;
взрывозащищенное Ех, Вн
• Степень защиты от воздействия пыли и воды:
IP55
• Выходной сигнал:
0-5, 4-20, 0-20 мА;
4-20 мА - для исполнения "Ех"
• Масса датчика не более 0,5 кг
• Предел допускаемой основной погрешности
±0,25; ±0,5; ±1,0%
• Межповерочный интервал - 2 года
• Гарантийный срок эксплуатации - 18 мес.
• Внесены в Госреестр средств измерений под №18375-99, сертификат №6312
Малогабаритные датчики давления серии Метран-55 предназначены для работы в системах автоматического контроля, регулирования и управления технологическими процессами; широко применяются в системах коммерческого учета в составе теплосчетчиков.
Датчики работают со вторичной регистрирующей и показывающей аппаратурой, регуляторами и другими устройствами автоматики, воспринимающими стандартный токовый сигнал.
Простота конструкции, надежность, малые габариты, невысокая стоимость обеспечивают повышенный спрос потребителей.
Таблица 1- Основные характеристики датчиков давления Метран-55
Тип датчика |
Модель |
Верхний предел измерений, МПа |
Предел допускаемой основной погрешности, ±γ, % | |
Датчики абсолютного давления (ДА) | ||||
Метран-55-ДА Метран-55-Ех-ДА Метран-55-Вн-ДА |
505 |
0,6; 1,0; 1,6; 2,5 |
0,25; 0,5; 1,0 | |
506 |
4,0; 6,0; 10,0; 16,0 | |||
Датчики избыточного давления (ДИ) | ||||
Метран-55-ДИ Метран-55-Ех-ДИ Метран-55-Вн-ДИ |
515 |
0,6; 1,0; 1,6; 2,5 |
0,25; 0,5; 1,0 | |
516 |
4,0; 6,0; 10,0; 16,0 | |||
517 |
25; 40; 60; 100 | |||
518 |
0,1; 0,16; 0,25; 0,4; 0,6 | |||
Датчики разрежения (ДВ) | ||||
Метран-55-ДВ Метран-55-Ех-ДВ Метран-55-Вн-ДВ |
528 |
0,1 |
0,25; 0,5; 1,0 | |
Датчики давления-разрежения (ДИВ) | ||||
разрежения |
избыточного давления | |||
Метран-55-ДИВ Метран-55-Ех-ДИВ Метран-55-Вн-ДИВ |
535 |
0,1 0,1 0,1 0,1 |
0,5 0,9 1,5 2,4 |
0,25; 0,5; 1,0 |