Методика использования занимательных заданий в процессе обучения математике
Единственно правильный путь, ведущий к ускорению познания, состоит в применении методов обучения, способствующих ускорению интеллектуального развития (разумеется, без ущерба физическому развитию, а в гармоничном единстве с ним).
Под занимательностью на уроке понимают те компоненты урока (способы подачи учебного материала, а иногда и организации обучения), которое содержит в себе элементы не
обычного, удивительного, неожиданного, комического, вызывают интерес у школьников к учебному предмету и способствуют созданию положительной эмоциональной обстановке учения.
В дидактике и методике математике уже выдвинуты и обоснованы основные положения, касающиеся занимательности обучения.
Во-первых, всю занимательность обучения, следуя К.Д. Ушинскому, принято делить на «внешнюю» (не связанную с содержанием урока) и «внутреннюю», причем «внутренняя» занимательность предпочтительней «внешней» и удельный вес ее должен постепенно увеличиваться.
Во-вторых, все материалы занимательного характера обычно разбивают на три группы: материалы, занимательные по содержанию; материалы, занимательные по форме; материалы, занимательные и по форме, и по содержанию.
В-третьих, основу занимательности, используемой на уроках, должны составлять задания, непосредственно связанные с программным материалом.
Сделать учебную работу насколько возможно интересной для ребенка и не превратить этой работы в забаву – это одна из труднейших и важнейших задач дидактики. Сознательно и прочно усвоить современный курс математики средней школы без должного прилежания нельзя. Прилежание же зависит от доброй воли, которая ни принуждением не внушается, ни сама не приходит, а является чаще всего вслед за познавательным интересом, который можно развивать посредством решения занимательных задач.
Через занимательность проникает в сознание ученика сначала ощущение прекрасного, а затем, при последующем систематическом изучении математики, и понимание красоты ее методов.
Важная особенность занимательной математики состоит в том, что она побуждает к работе мысли. Насыщенная задачами, головоломками, вопросами и проблемами, она вовлекает ученика в активное сотрудничество с учителем на уроке, будит любознательность и поощряет его к первым самостоятельным открытиям [7,с.45]
1.2 Сущность и типология занимательных задач
В повседневной жизни мы часто слышим: «занимательный материал», «занимательная игра», «занимательная задача». Обычно «занимательное» понимается как увлекательное, интересное, притягивающее к себе. Это происходит прежде всего благодаря необычности, нетрадиционности сюжета, положительно влияющего на эмоциональный настрой аудитории, когда в качестве исходных данных и ситуаций используются вымышленные или реальные персонажи, определенными средствами достигающие заданной цели.
Задачей будем называть некую ситуацию, включающую в себя набор исходных данных, используя которые требуется ответить на поставленный в условии вопрос.
Выделим характерные признаки занимательных задач:
такая задача (как и любая задача вообще) имеет развивающую направленность;
в задаче должны быть использованы нестандартные формы и способы представления данных;
в качестве исходных данных и ситуаций используются вымышленные или реальные персонажи, оперируя которыми требуется достигнуть заданной цели;
это качественная задача, решение которой строится на рассуждении без применения математических выкладок;
задача включает в себя необычно поставленный вопрос.
Существуют различные классификации и типологизации задач, применяемых в учебном процессе, например по способу подачи информации (текстовые, графические, задачи-рисунки), по способу решения (арифметические, алгебраические, геометрические, графические), по содержанию (количественные и качественные), по функциональным возможностям в обучении (задачи с дидактическими функциями, задачи с познавательными функциями, задачи с развивающими функциями) и так далее.
Более близка типологизация, предложенная И.В.Егорченко [6], когда выделяются стандартные прикладные задачи, нестандартные прикладные задачи, нестандартные задачи, не являющиеся прикладными, и материалы, вообще не являющиеся задачами. При этом под «нестандартными» И.В. Егорченко [6] понимает именно занимательные задачи. Последние дополнительно подразделяются в зависимости от нестандартной формы, способа решения и особенностей. При этом учитываются: 1) постановка задачи, 2) процесс решения, 3) представление ответов, 4) осуществление проверки решения.
Наиболее интересны задачи, подпадающие под первый тип. К ним И.В. Егорченко относит:
задачи с лишними, недостающими или противоречивыми данными;
задачи без явной постановки вопроса или с неявной его постановкой;
задачи с нестандартной формой изложения данных (рисунок, схема, диаграмма);
задачи с реккурентным способом постановки данных и условий (когда данные задаются опосредованно, один вопрос через другой);
задачи, направленные на установление взаимосвязи, проведение аналогии, обобщения;
задачи, имеющие нестандартную фабулу постановки и задания вопроса;
задачи в форме игр либо заданий практической или лабораторной работы;
задачи, данные в которых представлены в непривычных (нестандартных) единицах измерения;
задания на нахождение ошибок, подтверждение истинности или обнаружение смысловых противоречий.
Не менее интересна и классификация нестандартных задач, не являющихся прикладными. Среди них И.В. Егорченко [6] называет:
задачи, направленные на поиск взаимосвязей между заданными объектами, процессами или явлениями;
задачи, неразрешимые или не решаемые средствами школьного курса на данном уровне знаний учащихся;
задачи, в которых необходимо:
проведение и использование аналогий, определение различий заданных объектов, процессов или явлений, установление противоположности заданных явлений и процессов или их антиподов;
осуществление практической демонстрации, абстрагирование от тех или иных свойств объекта, процесса, явления или конкретизации той или иной стороны данного явления;
установка причинно-следственных отношений между заданными объектами, процессами или явлениями;
построение аналитическим или синтетическим путем причинно-следственных цепочек с последующим анализом получившихся вариантов;
правильное осуществление последовательности определенных действий, избегая ошибок-«ловушек»;
осуществление перехода от плоскостного к пространственному варианту заданного процесса, объекта, явления или наоборот.
Как нетрудно заметить, количество занимательных задач достаточно велико. Среди их многообразия особо выделяют четыре типа, с успехом применяемые в обучении информатике: задачи-рисунки, логические мини-задачи, задачи-шутки и задачи с неполным условием. В настоящее время в качестве средства обучения в основном применяются задачи двух последних типов.
Задачи первого типа ( задачи-рисунки ) представляют собой рисунки или схемы каких-либо объектов, сделанные в необычных ракурсах, т.е. с тех сторон, с которых данный объект мы видим наименее часто. При решении такой задачи учитель (ведущий, загадывающий) задает аудитории вопросы типа: «Что изображено на рисунке?», «С какой стороны изображен предмет?», - либо вопросы о принадлежности данного объекта кому или чему-либо.
Другие рефераты на тему «Педагогика»:
- Сюжетно-ролевая игра как средство речевого развития детей среднего дошкольного возраста
- Проблемы модернизации общего и профессионального образования
- Педагогические способности, их структура и развитие
- Методика преподавания литературной сказки в средней школе
- Развитие памяти младших школьников в процессе учебной деятельности
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения