Модель распределения ресурсов
. (2.1)
Количество ресурсов в начале k-го года будем характеризовать величиной (параметр состояния). Управление на k-м шаге состоит в выборе переменных , обозначающих ресурсы, выделяемые в k-м году i-
му предприятию.
Если предположить, что доход в дальнейшем распределении не участвует, то уравнение состояния процесса имеет вид
(2.2)
Если же некоторая часть дохода участвует в дальнейшем распределении в каком-нибудь году, то к правой части равенства (2.2) прибавляется соответствующая величина.
Требуется определить ns неотрицательных переменных , удовлетворяющих условиям (2.2) и максимизирующих функцию (2.1).
Вычислительная процедура ДП начинается с введения функции , обозначающей доход, полученный за п—k+1 лет, начиная с k-го года до конца рассматриваемого периода, при оптимальном распределении средств между s предприятиями, если в k-м году распределялось средств. Функции для удовлетворяют функциональным уравнениям (1.5), которые запишутся в виде
(2.3)
При согласно (1.5) получаем
. (2.4)
Далее необходимо последовательно решить уравнения (2.4) и (2.3) для всех возможных . Каждое из этих уравнений представляет собой задачу на оптимизацию функции, зависящей от s переменных. Таким образом, задача с ns переменными сведена к последовательности n задач, каждая из которых содержит s переменных. В этой общей постановке задача по-прежнему сложна (из-за многомерности) и упростить ее, рассматривая как ns-шаговую задачу, в данном случае нельзя. В самом деле, попробуем это сделать. Пронумеруем шаги по номерам предприятий сначала в 1-м году, затем во 2-м и т. д.:
и будем пользоваться одним параметром для характеристики остатка средств.
В течение k-го года состояние к началу любого шага (i=l, 2, s) определится по предыдущему состоянию с помощью простого уравнения . Однако по истечении года, т. е. к началу следующего года, к наличным средствам необходимо будет добавить средств и, следовательно, состояние в начале -го шага будет зависеть не только от предшествующего ks-го состояния, но и от всех s состояний и управлений за прошлый год. В результате мы получим процесс с последействием. Чтобы исключить последействие, приходится вводить несколько параметров состоянии; задача на каждом шаге остается по-прежнему сложной из-за многомерности.
2.2 Двумерная модель распределения ресурсов
Задача 2. Планируется деятельность двух предприятий (s=2) в течение n лет. Начальные средства составляют . Средства x, вложенные в предприятие I, приносят к концу года доход и возвращаются в размере ; аналогично, средства x, вложенные в предприятие II, дают доход и возвращаются в размере . По истечении года все оставшиеся средства заново перераспределяются между предприятиями I и II, новых средств не поступает и доход в производство не вкладывается.
Требуется найти оптимальный способ распределения имеющихся средств.
Будем рассматривать процесс распределения средств как n-шаговый, в котором номер шага соответствует номеру года. Управляемая система — два предприятия с вложенными в них средствами. Система характеризуется одним параметром состояния — количеством средств, которые следует перераспределить в начале k-го года. Переменных управления на каждом шаге две: и — количество средств, выделенных соответственно предприятию I и II. Так как средства ежегодно перераспределяются полностью, то . Для каждого шага задача становится одномерной. Обозначим через , тогда .
Показатель эффективности k-го шага равен . Это—доход, полученный от двух предприятий в течение k-го года.
Показатель эффективности задачи—доход, полученный от двух предприятий в течение n лет—составляет
. (2.5)
Уравнение состояния выражает остаток средств после k-го шага и имеет вид
. (2.6)
Пусть — условный оптимальный доход, полученный от распределения средств между двумя предприятиями за п—k+1 лет, начиная с k-го года до конца рассматриваемого периода. Запишем рекуррентные соотношения для этих функций:
; (2.7)
,
где - определяется из уравнения состояния (2.6).
Задача 3. Решить задачу 2 при следующих условиях: ; ; ; ; ; .
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
- Информционные технологии
- Использование современной компьютерной техники и программного обеспечения для решения прикладных задач в области геодезических измерений
- Разработка программы рисования замкнутых многоугольников на языке С++, с использованием библиотеки VCL
- Моделирование пассивных электрических цепей второго порядка
- Информация, как инструмент делового общения
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности