Обеззараживание воды
Таблица 2
Параметры |
Значения параметров при содержании хлоридов в исходной воде, мг/л | ||
20 . 50 |
50 . 100 |
100 . 200 < /td> | |
Доза хлора, г/м3 |
1 |
1 |
1 |
Производительность, м3/ч, при коэффициенте выхода хлора по току: | |||
0,2 |
5 .7 |
8 . 10 |
9 . 11 |
0,4 |
8 .9 |
11 .13 |
14 . 16 |
0,6 |
11 .12 |
15 .17 |
20 . 23 |
0,8 |
14 .16 |
20 .24 |
28 . 32 |
Напряжение, В |
8 .11 |
6 .8 |
4 . 6 |
Анодная плотность тока, А/м2 |
80 . 100 | ||
Межэлектродное расстояние, мм |
3 . 5 |
Как показали расчеты и практика, обеззараживание подземных вод предпочтительно прямым электролизом в рамках применимости данного метода.
Озонирование воды
Одним из наиболее сильных окислителей, уничтожающих бактерии, споры и вирусы (в частности, вирусы полиомиелита), является озон. Несомненным преимуществом озонирования является и то, что при этом одновременно с обеззараживанием происходит обесцвечивание воды, а также ее дезодорация и улучшение вкусовых качеств. Озон не изменяет природные свойства воды, так как его избыток (непрореагировавший озон) через несколько минут превращается в кислород.
Озон 03, используемый для озонирования, получают из атмосферного воздуха в аппаратах, называемых озонаторами, в результате воздействия на него «тихого» (т. е. рассеянного без искр) электрического заряда, сопровождающегося выделением озона. Общая схема установки по озонированию показана на рис. 14.8. Озонаторный генератор представляет собой горизонтальный цилиндрический аппарат (вариант) с вмонтированными в него из нержавеющей стали трубками по типу теплообменника. Внутри каждой стальной трубы помещена стеклянная трубка с небольшой (2 .3 мм) кольцевой воздушной прослойкой, являющейся разрядным пространством. Внутренняя поверхность стеклянных трубок покрыта графитомедным (или алюминиевым) покрытием. Стальные трубы являются одним из электродов, а покрытия на внутренних стенках стеклянных трубок — другим. К стальным трубам подводят электрический переменный ток напряжением 8 . 10 кВ, а покрытия на стеклянных трубках заземляют. При прохождении электрического тока через разрядное пространство происходит разряд коронного типа, в результате которого образуется озон. Предварительно осушенный и очищенный воздух проходит через кольцевое пространство и таким образом озонируется, т. е. образуется озоновоздушная смесь. Стеклянные трубки являются диэлектрическим барьером, благодаря чему разряд получается «тихим», т. е. рассеянным без образования искр. При этом до 90% электроэнергии превращается в теплоту, которую отводит от озонатора циркулирующая в межтрубном пространстве аппарата охлаждающая вода. Подача в озонаторы кислорода увеличивает выход озона в 2 .2,5 раза по сравнению с подачей воздуха, но требует строительства установок для получения кислорода. Воздух, используемый в озонаторах, должен быть предварительно освобожден от влаги и пыли. Даже следы влаги, попадая в разрядное пространство аппарата, вызывают появление искрового разряда, который значительно снижает показатели работы озонатора — уменьшается выход озона и примерно в 4 раза возрастает расход электроэнергии (по сравнению с подачей сухого воздуха). Кроме того, присутствие следов влаги делает озон весьма агрессивным к деталям озонатора, трубам и арматуре. Для извлечения пыли воздух пропускают через матерчатые фильтры специальных конструкций, а для удаления влаги устанавливают адсорберы, загружаемые при сушке воздуха выделяется теплота.
Чтобы в озонатор не попал слишком теплый воздух, его подвергают охлаждению. С этой целью воздух пропускают через теплообменник либо охлаждают в самом адсорбере путем подачи воды через змеевик, располагаемый непосредственно в селикагеле. Озон (озоновоздушная смесь) вводят в воду либо через эжекторы (эмульгаторы), либо через сеть пористых труб или распределительных каналов, укладываемых по дну контактного резервуара. Распределительные каналы перекрывают фильтросными пластинами.
Доза озона зависит от назначения озонирования воды. Если озон вводят только для обеззараживания в фильтрованную воду (после ее предварительного коагулирования), то дозу озона принимают 1 . 3 мг/л, для подземной воды — 0,75 . 1 мг/л, при введении озона для обесцвечивания и обеззараживания воды доза озона может доходить до 4 мг/л. Продолжительность контакта обеззараживаемой воды с озоном принимается 5 . . 12 мин.
Рис. 14.9. Влияние температуры (а) и величины рН (б) на интенсивность разложения озона
Скорость разложения озона увеличивается при повышении рН, температуры, и степени минерализации воды (рис. 14.9). Озон очень сильный окислитель, его окислительный потенциал 2,06 В. Патогенные микроорганизмы уничтожаются им в 15— 20 раз, а споровые формы бактерий — в 300—600 раз быстрее, чем хлором. Механизм обеззараживания воды озоном основан на его способности инактивировать сложные органические вещества белковой природы, содержащиеся в животных и растительных организмах.
Чистый озон взрывоопасен, он не взрывается, если его концентрация в озоно-воздушной смеси не превышает 10%, т. е. 140 г/м3. Озон токсичен и может поражать органы дыхания. ПДК озона в воздухе помещений, где находятся люди, не более 0,0001 мг/л.
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды