Обеззараживание воды

Методы обеззараживания воды

При предварительном хлорировании воды, коагулировании ее примесей с последующим отстаиванием и фильтрованием не удается достичь полного удаления болезнетворных микроорганизмов. До 10% хлоррезистентных бактерий и вирусов, среди которых могут быть и патогенные, сохраняют свою жизнеспособность. Поэтому заключительным этапом подготовки воды пит

ьевой кондиции является ее обеззараживание. Использование для питья подземной воды в большинстве случаев возможно без обеззараживания.

Эффект обеззараживания воды контролируют, определяя общее число бактерий в 1 см3 воды и количество индикаторных бактерий группы кишечной палочки в 1 л воды после ее обеззараживания. По ГОСТ 2874—82 «Вода питьевая» общее числа бактерий в 1 см3 неразбавленной воды должно быть не более 100, а количество бактерий группы кишечной палочки в 1 л (коли-индекс) — не более 3. Объем воды, в котором содержится одна кишечная палочка (коли-титр), должен быть не менее 300 мл.

Использование кишечной палочки в качестве индикаторного микроорганизма для оценки эффекта обеззараживания воды обусловлено следующими соображениями:

— присутствие кишечной палочки в воде определить проще,, чем другие бактерии кишечной группы;

— кишечная палочка всегда присутствует в кишечнике человека и теплокровных животных;

— присутствие ее в воде источника свидетельствует о его загрязнении фекальными сбросами;

— окислители, используемые при обеззараживании воды, летально действуют на кишечную палочку труднее, чем на патогенные микроорганизмы, вызывающие заболевания кишечно-желудочного тракта;

— кишечная палочка безвредна и является лишь контрольным микроорганизмом, характеризующим бактериальную загрязненность воды.

В технологии водоподготовки известно много методов обеззараживания воды, которые можно классифицировать на четыре основные группы: термический; с помощью сильных окислителей; олигодинамия (воздействие ионов благородных металлов); физический (с помощью ультразвука, радиоактивного излучения, ультрафиолетовых лучей).

Из перечисленных методов наиболее широко применяют методы второй группы. В качестве окислителей используют хлор, диоксид хлора, озон, йод, марганцовокислый калий; пероксид водорода, гипохлорит натрия и кальция. В свою очередь, из перечисленных окислителей на практике отдают предпочтение хлору, озону, гипохлориту натрия. Выбор метода обеззараживания воды производят, руководствуясь расходом и качеством обрабатываемой воды, эффективностью ее предварительной очистки, условиями поставки, транспорта и хранения реагентов, возможностью автоматизации процессов и механизации трудоемких работ.

Обеззараживанию подвергается вода, уже прошедшая предшествующие стадии обработки, коагулирование, осветление и обесцвечивание в слое взвешенного осадка (или отстаивание), фильтрование, так как в фильтрате отсутствуют частицы, на поверхности или внутри которых могут находиться в адсорбированном виде бактерии и вирусы, оставаясь, таким образом, вне воздействия обеззараживающих средств.

Электролизные установки для обеззараживания воды

Необходимость соблюдения особых мер предосторожности при транспортировке и хранении токсичного хлора является недостатком метода хлорирования воды. Этот недостаток особенно ощутим в нашей стране при обширности ее территории, когда хлор приходится перевозить на большие расстояния от заводов-поставщиков. Опасность утечки хлора на базисных складах водоочистных комплексов, расположенных вблизи населенных пунктов, во многих случаях препятствует применению этого метода обеззараживания воды. Использование хлорной извести и гипохлорита кальция технически просто, но дорого для крупных водоочистных комплексов.

Одним из наиболее перспективных способов обеззараживания питьевых вод на водоочистных комплексах с суточным расходом хлора до 50 кг является использование гипохлорита натрия (NaCIO), получаемого на месте потребления путем электролиза растворов поваренной соли или минерализованных вод, содержащих не менее 20 мг/л хлоридов (установка «Поток»). Электрохимический способ получения гипохлорита натрия основан на получении хлора и его взаимодействии со щелочью в одном и том же аппарате — электролизере.

В настоящее время в нашей стране серийно выпускается унифицированный ряд непроточных электролизных установок типа ЭН производительностью от 1 до 100 кг активного хлора в сутки. Для небольших водоочистных установок рекомендуются электролизеры ВИЭСХ (0,1 .0,2 кг/сут хлора), а также электролизеры ЭН-1 и ЭН-5 производительностью 1 и 5 кг активного хлора в сутки. При необходимости можно осуществлять централизованное получение гипохлорита натрия на одном из пунктов с последующей доставкой его к отдельным потребителям. В этом случае могут применяться установки ЭН-25 или ЭН-100 производительностью 25 и 100 кг активного хлора в сутки. Количество электролизеров должно быть не более трех, из которых один резервный.

Электролизная установка непроточного типа (рис. 1) состоит из следующих основных узлов: бака для растворения соли, электролизера с зонтом вытяжной вентиляции, бака-накопителя, гипохлорита натрия, выпрямительного агрегата и элементов автоматики. Она работает следующим образом. В растворный бак загружают поваренную соль, заливают воду и с помощью насоса перемешивают до получения насыщенного (280 . 300 г/л) раствора поваренной соли. Затем раствор, с помощью насоса передают в электролизер, где разбавляют водопроводной водой до рабочей концентрации (100 . 120 мг/л). Готовый раствор сливают в бак-накопитель, откуда дозируют в обрабатываемую воду. Технологические характеристики электролизеров непроточного типа приведены в табл. 1.

Электролизеры рекомендуется устанавливать в отдельном помещении. Допускается совместное расположение в одном помещении электролизера и бака-накопителя гипохлорита натрия. Раствор гипохлорита натрия должен поступать в бак-накопитель самотеком, для чего перепад высот между сливным патрубком электролизера и баком-накопителем должен быть не менее 0,1 . 0,2 м.

Обеззараживание воды на установках производительностью до 5 тыс. м3/сут может быть достигнуто прямым ее электролизом при исходном содержании хлоридов не менее 20 мг/л и жесткости до 7 мг-экв/л. По Г. Л. Медришу, процесс протекает в два этапа: электрохимическое получение окислителей и их смешивание с обеззараживаемой водой. Одним из основных факторов прямого электролиза является вид применяемого анода, оптимальны платино-титановые аноды (ПТА) и окисно-рутениевые аноды (ОРТА).

Отечественная промышленность серийно выпускает установки прямого электролиза «Поток» с анодами из диоксида рутения и катодами из титана, которые чередуются с зазором между пластинами 3 мм. Установка состоит из электролизера, блока питания и замкнутого кислотного контура. Электролизер выполнен в форме параллелепипеда, внутри которого размещен пакет электродов. Кислотный контур предназначен для периодической промывки аппарата 3 . 5%-ным раствором кислоты для борьбы с катодным солеотложением. При одноразовом проходе под давлением обрабатываемой воды снизу вверх в межэлектродном пространстве электролизера обеспечивается ее обеззараживание, величина остаточного хлора в воде через 30 мин контакта составляет 0,3 . 0,5 мг/л. В табл. 2 приведены параметры работы установки «Поток».

Страница:  1  2  3  4  5 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы