Деформированные алюминивые сплавы

7.3.5 Косину реза проверяют угольником по ГОСТ 3749, проверочной ли­нейкой длиной 1 м по ГОСТ 8026 к щупом по [2].

7.3.6 Овальность, косину реза, кривизну и скручивание проверяют по ГОСТ 26877.

Для определения скручивания пруток кладется на проверочную плату, изме­ряется размер.

7.37 Допускается применять другие методы и измерительные инстру­менты, обеспечивающие необходимую точн

ость, установленную в настоя­щем стандарте. При возникновении разногласий в определении показателя контроль проводят методом, указанным в стандарте.

7.4 Контроль качества поверхности прутков проводят статистическим ме­тодом, обеспечивающим заданное качество поверхности с вероятностью 96 % (приемочный уровень дефектности АQL, = 4 %).

Поверхность прутков осматривают без применения увеличительных при­боров.

7.4.1 Глубину залегания дефектов измеряют профилометром по ГОСТ 19300 или глубиномером индикаторным (специальным) по технической до­кументации.

7.4.2 Зачистку прутков проводят только в продольном направлении абра­зивным кругом, шабером или шлифовальной шкуркой на тканевой основе не крупнее 6-го номера зернистости по ГОСТ 5009.

Окончательную зачистку прутков до гладкой поверхности проводят шли­фовальной шкуркой на бумажной основе не крупнее 10-го номера зернисто­сти по ГОСТ 6456.

7.5 Отбор и подготовку образцов для испытаний на растяжение проводят по ГОСТ 24047.

Испытания механических свойств проводят методом разрушающего кон­троля по ГОСТ 1497 или методом неразрушающего контроля (вихревых то­ков) по ГОСТ 27333 и ОСТ 1 92070.2.

При наличии разногласий испытания механических свойств проводят по ГОСТ 1497.

7.5.1 Для проверки механических свойств методом разрушающего кон­троля от каждого проверяемого прутка с выходного конца в продольном на­правлении вырезают один образец. Расчетную длину образца в миллиметрах вычисляют по формуле l0 = 5 d0, где d0 — расчетный диаметр образца, мм.

7.5.2 Проверку механических свойств методом вихревых токов проводят на поверхности прутков в состоянии после закалки и старения.

7.6 Макроструктуру прутков проверяют на поперечном макротемплете, вырезанном с утяжинного конца проверяемого прутка.

При наличии утяжины на проверяемых прутках (при условии соответст­вия макроструктуры остальным требованиям) она должна быть полностью удалена, при этом остальные прутки обрезают на величину, равную длине отрезанного конца от проверяемого прутка.

7.7 Наличие крупнокристаллического ободка контролируют на закален­ных образцах (темплетах) толщиной не менее 30 мм, предназначенных для определения макроструктуры. При изготовлении макротемплета, отрезанного от горячепрессованного прутка и подвергнутого закалке, снимают слои ме­талла на глубину не менее 10 мм.

При изготовлении макротемплета, отрезанного от отожженного или зака­ленного прутка, глубина снятия слоя металла не ограничивается.

7.8 Микроструктуру прутков проверяют металлографическим способом на одном образце по ГОСТ 27637 или методом вихревых токов по ГОСТ 27333 и ОСТ 1 92070.1.

7.9 Наличие селитры на поверхности прутков проверяют путем нанесения на поверхность прутка в любом листе капли 0,5 %-ного раствора дифенила­мина в серной кислоте (к навеске 0,5 г дифениламина приливают 10 см3 дис­тиллированной воды и 25 см3 серной кислоты плотностью 1,84 г/см3).

При растворении дифениламина объем раствора доводят до 100 см3 при­бавлением серной кислоты плотностью 1,84 г/см3.

Интенсивное посинение капли раствора через 10—15 с указывает на при­сутствие в данном месте селитры. После испытания каплю удаляют фильтро­вальной бумагой, а испытанный участок тщательно промывают водой и на­сухо вытирают.

При обнаружении селитры партия прутков подлежит повторной промывке и повторному контролю на наличие селитры на поверхности прутков.

8.Заключение.

Алюминиевые сплавы имеют широкое использование в различных отраслях народного хозяйства. Это объясняется тем, что важнейшим их преимуществом является высокая технологичность. В связи с этим при использовании алюминиевых сплавов можно применять различное высокопроизводительное оборудование, в том числе плавильное, литейное, механообрабатывающее и другое, что обеспечивает качественное изготовление выпускаемой продукции. Несмотря на высокую стоимость первичного алюминия и его сплавов, а также новейшего высокопроизводительного оборудования, как показывают расчеты, затраты на изготовление продукции из алюминиевых сплавов полностью окупаются и дают значительный экономический эффект, особенно при организации крупносерийных производств.

В наиболее развитых странах мира, по объемам производства и потребления, алюминий и его сплавы, в связи с этим, занимают второе место после стали. Кроме того, потребление алюминия имеет тенденцию постоянного роста, в результате его производство развивается опережающими темпами. Так, например, одним из наиболее перспективных направлений развития приготовления и плавки алюминиевых сплавов в конце ХХ, начале XXI века явилось использование дуговых печей постоянного тока (ДППТ), отличающихся от других типов плавильного оборудования тем, что технология плавки осуществляется с применением высококонцентрированного источника энергии - дуги постоянного тока.

Для приготовления алюминиевых сплавов наиболее широкое распространение получили следующие типы плавильных агрегатов: газовые-пламенно-отражательные; шахтные; электросопротивления; индукционные промышленной частоты; индукционные канальные. Выбор типа плавильного агрегата для приготовления алюминиевых сплавов является одним из наиболее ответственных этапов разработки технологий, как в литейном, так и металлургическом производстве, в том числе для переработки вторичного сырья. Использование типа плавильного агрегата также зависит от условий, в которых находится данное предприятие, его обеспеченность тем или иным источником энергии. Весьма важную роль в выборе плавильного агрегата имеет также: объем производства, технико-экономические показатели процесса, возможность получения сплавов наиболее высокого качества, величина и стоимость используемых энергозатрат на 1 тонну сплава, трудоемкость выплавки и обслуживания плавильного агрегата.

Использование ДППТ для плавки алюминиевых сплавов обеспечивает решение таких важных проблем, связанных с их приготовлением, как:

· сокращение безвозвратных потерь металла;

· экономию энергетических затрат;

· повышение производительности труда в 2 и более раз;

· значительное повышение качества выплавляемых сплавов за счет более низкого содержания в сплаве газа и неметаллических включений.

Более низкий расход электроэнергии является одним из наиболее важных особенностей ДППТ по сравнению с другими типами электрических печей, практикой установлено, что расход электроэнергии по сравнению с другими типами печей, при использовании ДППТ сокращается на 20 % за счет сокращения количества расплавленного металла в раздаточных печах.

Практикой использования дуговых печей постоянного тока также установлено, что более высокое качество выплавляемых алюминиевых сплавов достигается за счет его магнитогидродинамического (МГД) перемешивания в процессе плавки, что способствует получению однородного химического состава с мелкозернистой структурой. В результате выплавки в ДППТ высококачественных сплавов, в некоторых случаях не требуется проведение их рафинирования и модифицирования.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы