Моделирование динамики яркостной температуры земли методом инвариантного погружения и нейронных сетей

Для слежения за изменением ледовой обстановки в морях составляют ледовые карты. Важные преимущества космической съемки – повторяемость поступления информации и оперативность обработки – дают возможность фиксировать состояние быстро изменяющихся природных явлений на различные моменты времени. Автоматизированные технологии позволяют отличать льды от облаков и разделять лед по сплоченности.

В

результате, по спутниковым данным, создаются динамические карты ледовой обстановки в период навигации, а также в осенне-зимний и весенний периоды (наступление ледостава, очищение ото льда).

В результате интерференции наблюдаемая яркостная температура участка водной поверхности с разливом нефти изменяется периодически с изменением толщины пленки нефти. Сравнение наблюдаемой яркостной температуры участка разлива нефти с яркостной температурой участка чистой водной поверхности позволяет провести измерения толщины пленки нефти в пятне загрязнения. [8,13,16]

Особенностью мероприятий по метеозащите крупных городов – использование наряду с радиолокационной информацией, отражающей пространственно-временную эволюцию жидко-капельных облаков и осадков СВЧ-радиометрической информации о содержании как парообразной, так и жидко-капельной влаги в атмосфере. В ходе работ выполняется анализ временной / пространственной изменчивости характеристик влагосодержания атмосферы (водозапас облаков, влагозапас атмосферы). [6,10,13,16]

Задачи, решаемые радиометрическим зондированием для других планет Солнечной Системы.

Дистанционное зондирование радиометрическими методами проводится не только для Земли, но и для других близлежащих планет Солнечной системы. Эти методы особенно оправданы для планет с «густой» атмосферой.

Радиолокационное картирование северного полушария планеты Венера космическими аппаратами Венера-15 и Венера-16, выполненное в 1983–1984 гг. советскими учеными, заслуженно является достижением мирового уровня. Впервые в мире с борта космических аппаратов была выполнена детальная радиолокационная съемка поверхности планеты, закрытой плотной атмосферой, непрозрачной для наблюдений в оптическом диапазоне. Площадь отснятой территории, расположенной севернее 300 С.Ш., равна 115 млн. км2, что составляет четверть всей поверхности Венеры и лишь на треть меньше территории всей земной суши. Идея проведения эксперимента и его научно-методическая основа разработана в ИРЭ РАН. [2,15,18]

В рамках программы по исследованию планет солнечной системы и их спутников по проекту «Марс-96» совместно с учеными ИРЭ был разработан и установлен на космическом аппарате длинноволновый радар для глубинного зондирования грунта и ионосферы Марса в диапазоне рабочих частот от 0,2 до 5 МГц. Основным препятствием к широкому использованию радиолокаторов в геологической разведке земных недр является сильное поглощение радиоволн в почве из-за наличия в ней воды. Однако на других планетах и космических телах вода практически отсутствует, поэтому глубина проникновения может быть весьма большой. Основной целью эксперимента «Марс-96» являлось исследование высотного распределения электронной концентрации ионосферы Марса, измерение диэлектрических свойств грунта на разных глубинах вдоль трассы дрейфа космического аппарата, выявление глубинной структуры полярных областей. [2,15,18]

1.2 Недостатки современных методов обработки данных дистанционного зондирования

На данный момент в мире существует достаточно большое количество теорий, которые сами по себе верны, но при некоторых условиях не выполняются, дают сбой. Наверное, ещё не существует универсального способа или метода для определения тех или иных характеристик. Также и в радиометрии. Есть множество моделей, некоторые разные, некоторые почти одинаковые. Для примера можно рассмотреть характеристики почвы, которые надо учитывать, а которыми можно пренебрегать.

В идеальном случае мы считаем, что градиент температуры неизвестен, это есть функция, которую можно только аппроксимировать более простой, но точно задать невозможно. Или разбивать почвы на слои, желательно бесконечно малые и определять температуру каждого слоя. Также следует поступать с комплексной диэлектрической проницаемостью (КДП) и волновым числом, которое выражается через КДП. Зависит от КДП и коэффициент отражения каждого слоя, но эту зависимость можно определить с помощью простого математического аппарата. Влажность каждого слоя также нужно учитывать и определять.

Не надо забывать, что почва – это неоднородная среда. В почве встречаются камни, песчинки, живые организмы, мёртвые организмы, вода, трава, огромное количество природных ресурсов и многое другое. Каждая составляющая почвы имеет свою КДП, волновое число, влажность, температуру, коэффициент отражения. То есть для задания алгоритма по расчёту яркостной температуры и отражающей способности надо каждый слой разбивать на много подслоёв. Такое задание параметров почвы очень сильно осложняет работу и сводит её к нереализуемой, так как всё учесть невозможно, причём наука далеко ещё не всё знает об окружающей нас природе (среде). Также на поверхности почвы существуют шероховатости, неровности, растительность, органические соединения (живые существа). В зависимости от географического расположения изменяются характеристики среды, а также угол под которым растут растения на поверхности, вид растений (насколько сильно они поглощают тепло, как глубоко корни приникают в почву и прочие факторы). Даже если учесть все известные зависимости и закономерности максимально точно, то всегда будет какое-то допущение, упрощение. Для этого и создано это множество моделей, которые учитываю одно, досконально просчитывая все возможные варианты, и не учитывают другое.

Модели, используемые при тематической обработке радарных или радиометрических изображений, можно условно поделить на два класса: физические и статистические. Физические модели строятся на основе знания закономерностей собственного излучения или рассеяния волн. Они содержат функциональные соотношения, связывающие совокупность геофизических параметров исследуемого природного объекта с измеряемыми характеристиками принимаемого микроволнового излучения. Это позволяет построить количественные алгоритмы восстановления с использованием математических методов решения обратных задач, соответствующих форме найденных функциональных соотношений. Статистические модели не содержат априорных функциональных соотношений. Они рассчитаны на получение статистических оценок геофизических параметров с помощью выборочных значений для конкретной совокупности характеристик электромагнитных полей, которые получаются в процессе зондирования, и геофизической информации, собираемой с тестовых участков. Этот подход широко использует обучение по выборкам и нейронные сети. Построение статистических моделей трудоемко, и они обычно справедливы для конкретных природных объектов. Однако ввиду сложности процессов собственного излучения и рассеяния электромагнитных волн при построении физических моделей для большинства реальных природных объектов часто встречаются непреодолимые трудности. Поэтому в настоящее время используются оба вида моделей в зависимости от сложности зондируемых природных комплексов. В ряде случаев применяются комбинированные модели, в которых используются как элементы статистических оценок, так и физические закономерности взаимодействия волн с природной средой.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы