Методы оценки температурного состояния
На поверхности оправки образуется слой окалины. Толщина окалинообразующего слоя на поверхности оправки .
Физические условия.
При прошивке происходит теплообмен в системе тел: валки - линейки - гильза - слой окалины - оправка. Температура валков и линеек принимается постоянной. Источниками тепла являются нагретая заго
товка и внутренние источники (деформационный разогрев, разогрев за счет сил трения). Тепловая энергия в процессе прошивки поступают на разогрев технологического инструмента. В период между прошивками оправка охлаждается на воздухе или в проточной воде.
Прошивная оправка является сплошным однородным изотропным телом. Ее теплопроводность является скалярной величиной. В качестве материала оправки выбирается сталь марки 30Х2МФА и 38ХНЗМФА. Физическими параметрами оправки являются плотность , удельная массовая теплоемкость оправки
, коэффициент теплопроводности материала оправки
. Внутренние источники тепла в оправке отсутствуют.
Время нагрева оправки при прошивке определяется по скорости движения металла и заданной длине гильзы
:
.
Условия на границе металл - оправка.
Теплофизическими свойствами металла являются плотность , удельная массовая теплоемкость металла
, коэффициент теплопроводности металла
. При деформации металла происходит выделение теплоты.
Для определения кондуктивного и лучистого тепловых потоков на границе контакта металл - оправка необходимо предварительно рассчитать температуру металла в зазоре между валками, линейками и прошивной оправкой. Эта температура деформируемого металла в процессе прошивки зависит, с одной стороны, от тепловыделений за счет работы сил трения и при формоизменении металла, а с другой стороны, от теплоотдачи к оправке, валкам, линейкам и окружающей среде. В общем случае среднюю температуру металла за время одной прошивки можно рассчитать по формуле:
,
где - средняя температура металла на входе в прошивной стан, рассчитывается по известному температурному полю заготовки перед прошивкой:
,
где - объем заготовки;
- время охлаждения заготовки на воздухе перед станом;
- среднее повышение температуры металла при прошивке, которое определяется из уравнения теплового баланса очага деформации:
,
где: - удельная объемная теплоемкость металла;
- объем очага деформации;
- общее количество энергии, затраченной на процесс деформирования;
- коэффициент выхода теплоты;
- теплота, поступающая в металл за счет работы сил трения;
- тепловые потери очага деформации в окружающую среду и технологический инструмент;
- поправочный коэффициент, полученный экспериментально.
Общее количество энергии на деформацию определяется по теоретической формуле П.И. Полухина:
,
где и
- радиус заготовки до прошивки и радиус гильзы;
- толщина стенки гильзы;
- сопротивление металла деформированию, рассчитывается по эмпирической формуле
,
- сопротивление деформации, выбираемое по величине среднего единичного обжатия;
- обжатие в пережиме.
Теплота, поступающая в металл при трении, рассчитывается по формуле:
,
в которой - коэффициент, учитывающий долю теплоты, поступающей на оправку от трения;
- плотность теплового потока за счет работы сил трения;
- коэффициент контакта;
- площадь поверхности металла под оправкой;
- время прошивки.
Тепловые потери металла в очаге деформации за время прошивки составляют величину:
,
где ,
и
- площади поверхностей контакта металла с валками, линейками и окружающей средой;
,
,
,
- плотности тепловых потоков;
- плотность потока тепловых потерь в окружающую среду;
и
- плотности потоков тепловых потерь к валкам и линейкам рассчитываются при допущении квазистационарного режима теплопроводности с учетом температурного сопротивления слоя окалины:
,
где и
- температура валков и линеек в стационарном режиме работы.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода