Математическое моделирование пластической деформации кристаллов

Оба типа ошибок можно уменьшить, уменьшая шаг интегрирования по времени, что, однако, увеличивает время вычислений.

Другой тип ошибок возникает из-за использования потенциала с обрезанием. Скачок потенциала на радиусе обрезания при пластической деформации, когда атомы могут двигаться друг относительно друга, приводит к значительному нарушению закона сохранении энергии. Использование потенци

ала без скачка (3) позволяет существенно улучшить выполнения закона сохранения энергии. Потенциал (3), однако, имеет скачок производной (силы) на радиусе обрезания . Это также приводит к несоблюдению закона сохранения энергии. Оно особенно ярко проявляется при уменьшении радиуса обрезания от канонических значений и . Это связанно с тем, что канонические значения радиуса обрезания находятся в минимумах радиального распределения атомов гексагональной решетки. Когда же попадает в максимум радиального распределения число атомов, то испытывающих действие силы (при ), то прекращающих испытывать ее действие (при ), становиться очень большим, что и приводит к существенному несохранению энергии. Чтобы избавиться от скачка производной потенциала на радиусе обрезания потенциал был модернизирован. Пусть

 

,

(14)

где

 

(15)

и , , . Тогда модернизированный потенциал имеет вид

 

(16)

Модернизированный потенциал гладко сшивается (до второй производной) с потенциалом Леннарда-Джонса на радиусе сшивки и зануляется вместе со своей первой производной на радиусе обрезания . С этим потенциалом при значениях параметров и были проведены все расчеты в данной работе.

1.12. Вычисление физических величин

При деформировании системы все физические величины, такие как напряжение , температура , кинетическая энергия , потенциальная энергия характеризующие деформируемую систему меняются. Их мгновенные значения, усредненные по малым промежуткам времени чтобы исключить тепловые колебания, описывают состояние деформируемой системы. В отличие от равновесных систем мы не можем теперь использовать усреднение по времени, а должны использовать усреднение по различным начальным состояниям системы.

Кинетическая и потенциальная энергия находятся как

 

(17)

 

(18)

Температура определяется как

 

,

(19)

где - размерность системы. В двухмерном случае - средней кинетической энергией. Выражение для тензора напряжений, основанное на вириальной теореме [14,15], имеет вид

 

,

(20)

где - -компоненты тензора напряжений для атома , - объем, приходящийся на атом (, где - полный объем системы), - масса атома , - -компонента его импульса, - расстояние между атомами и (- компонента вектора, направленного от -го атома к -му атому). Это выражение для тензора напряжений не единственное, существуют и другие его определения. Однако, когда напряжения усредняются по объему различные определения быстро сходятся к макроскопическому полю напряжений. Во время моделирования кривые напряжение - деформация строятся после усреднения атомного напряжения по всей системе.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы