Математическое моделирование пластической деформации кристаллов

Можно также исследовать влияние определенных дефектов, возникающие при облучении ГПУ кристаллов на их пластические свойства. Например, можно исследовать влияние межузельных кластеров и дефектов Френкеля. Очевидно, что начальные состояния, содержащие такие дефекты, легко приготовить, стартуя с начального состояния для идеального кристалла. Для этого необходимо удалить (добавить, переместить) ато

мы кристалла так, чтобы получилась конфигурация кристалла с требуемыми дефектами. Кристалл при этом получается обычно в напряженном состоянии. Это справедливо особенно при добавлении атомов, так как для добавленных атомов расстояния до ближайших атомов кристалла обычно намного меньше, чем равновесные расстояния между атомами в кристалле. Из-за сильного роста потенциала межатомного взаимодействия на малых расстояниях такие атомы обладают большой потенциальной энергией. Если не принять специальных мер, это может вызвать разлет кристалла. Чтобы не допустить этого и обеспечить релаксацию напряжений можно использовать процедуру минимизации и последующий подогрев системы до нужной температуры.

1.9. Нагрузка

В данной роботе рассматривалось деформирование кристаллов путем одноосного растяжения. Поскольку вдоль направления растяжения наложены периодические граничные условия, то отсутствуют свободные границы, к которым можно было бы приложить нагрузку. Поэтому задается растяжение системы, и потом находится возникшее вследствие этого напряжение. МД и деформирование выполняются одновременно. После каждого шага по времени МД выполняется малое растяжение, обеспечивающее нужную скорость деформации (на одном шаге). Растяжение выполнялось двумя способами. В первом, традиционно используемом [13], система растягивается равномерно по длине. При этом координаты атомов вдоль направления растяжения умножаются на масштабный множитель . На этот же множитель умножается длина ячейки моделирования. Согласно второму способу, предложенному в данной работе, растяжение концентрируется только возле торцов системы. Этот способ лучше соответствует экспериментальной ситуации, когда нагрузка прикладывается к торцам системы. При этом длина ячейки моделирования умножается на масштабный множитель, а координаты атомов не умножаются.

1.10. Уравнение для ширины ячейки моделирования

Если боковые стороны системы по отношению к растяжению свободны, то нет необходимости следить за шириной ячейки моделирования. Если же на систему наложены периодические граничные условия по двум направлениям, то изменению ширины ячейки моделирования необходимо уделить особое внимание. При растяжении появляются сжимающие в поперечном направлении напряжения и поперечный размер (ширина системы) уменьшается. Если ширину ячейки моделирования не изменять, то появится зазор, который будет увеличиваться со временем - система разорвется в поперечном направлении.

Один из подходов [13] состоит в умножении ширины ячейки моделирования на , при увеличении длины в раз. Здесь примерно равно коэффициенту Пуассона. Этого, однако, может оказаться недостаточно, поэтому, вводят дополнительную оптимизацию поперечного размера системы, основанную на методе Монте-Карло. После каждых ~20 шагов по времени МД предлагается изменение поперечного размера системы. Если в результате этого изменения энергия системы уменьшается, изменение принимается, в противном случае отклоняется. Вследствие этого, точное значение, выбранное для , становится некритичным.

В данной работе предложен и используется другой подход, основанный на динамическом уравнении для ширины ячейки моделирования. Выше уже было отмечено, что из-за периодичности в поперечном направлении система имеет топологию цилиндра. Сжимающие в поперечном направлении напряжения приводят к уменьшению боковой поверхности цилиндра и, следовательно, к уменьшению радиуса цилиндра. Записывая 2-ой закон Ньютона для движения системы как целого вдоль радиуса, имеем

 

,

(11)

где - напряжение в поперечном относительно растяжения направлении, - площадь системы. Учитывая, что ширина ячейки моделирования , имеем для неё уравнение

 

,

(12)

Чтобы, исключить колебательные процессы, удобно ввести в правую часть уравнения слабое фиктивное затухание . Решая уравнения для на каждом временном шаге МД, мы поддерживаем ширину ячейки моделирование вблизи равновесного положения. Очевидно также, что данный подход можно использовать для демпфирования колебаний системы рассмотренных выше.

1.11. Контроль системы

Правильность работы программы МД контролировалась с помощью закона сохранения энергии:

 

,

(13)

где - кинетическая энергия атомов системы; - потенциальная энергия их взаимодействия; - работа, произведенная над системой. Выполнение закона сохранения энергии очень важно при исследовании пластичности твердых тел. Это связано с тем, что хотя тепловое равновесие устанавливается быстро, но установление механического равновесия требует большого времени. Поэтому при деформировании система находится в тепловом равновесии, но скорее не находится в механическом равновесии, т.е. является неравновесной. Следовательно, потеря или приход энергии, вследствие невыполнения закона сохранения энергии, может существенно повлиять на характер поведения системы при деформации.

Неточное сохранение энергии связано в основном с ошибками, возникающими из-за конечного шага интегрирования по времени, а также с ошибками, возникающими из-за конечной точности представления чисел в компьютере.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы