Анализ динамического поведения механической системы

Рассматриваемая нами механическая система является неизменяемой, т.е. тела, входящие в систему, недеформируемые и скорости их точек относительно друг друга равны нулю. Поэтому сумма мощностей всех внутренних сил будет равняться нулю:

(1.12) = 0;

Будут равняться нулю и мощности следующих внешних сил, приложенных в точках, ск

орости которых равны нулю:

Сумма мощностей остальных внешних сил:

(1.13)

С учетом кинематических соотношений (1.7) сумму мощностей внешних сил определим:

(1.14)

где приведенная сила.

Упругую силу считаем пропорциональной удлинению пружины, которое равно сумме статического и динамического удлинений:

(1.15)

Сила вязкого сопротивления , тогда

(1.16)

В состоянии покоя системы приведенная сила равна нулю. Полагая в (1.16) S=0, =0 и F(t)=0, получаем условие равновесия системы:

(1.17)

Отсюда статическое удлинение пружины равно:

(1.18)

Подставляя (1.18) в (1.16), получаем окончательное выражение для приведенной силы:

(1.19)

Подставив выражения для производной от кинетической энергии и сумму мощностей всех сил с учетом (1.19) в (1.1), получаем дифференциальное уравнение движения системы:

(1.20)

(1.21)

где k циклическая частота свободных колебаний;

n – показатель степени затухания колебаний;

1.2 Определение закона движения системы

Проинтегрируем дифференциальное уравнение (1.20). общее решение этого неоднородного уравнения складывается из общего решения однородного уравнения и частного решения неоднородного :

S = + ;

Однородное дифференциальное уравнение, соответствующее данному неоднородному, имеет вид:

Составим характеристическое уравнение и найдем его корни:

т.к. n < k => решение однородного уравнения имеет вид:

где частное решение дифференциального уравнения ищем в виде правой части:

далее получаем:

Сравнивая коэффициенты при соответствующих тригонометрических функциях справа и слева, получаем систему алгебраических уравнений для определения состояния А и В

Решая эту систему получаем следующие выражения:

А = 0.04 м;

В = - 0.008 м;

Общее решение дифференциального уравнения:

Постоянные интегрирования определяем из начальных условий, при t = 0 имеем:

Решая эту систему получаем:

1.3 Определение реакций внешних и внутренних связей

Для решения этой задачи расчленим механизм на отдельные части и изобразим расчетные схемы отдельно для каждого тела. Определение реакций связей проведем с помощью теоремы об изменении кинетического момента и теоремы об изменении количества движения.

Тело №1:

Тело №2:

Тело №3:

C учётом кинематических соотношений (1.7) полученную систему уравнений преобразуем к вид:

Решая эту систему, получаем выражение для определения реакций связей:

2. Построение алгоритма вычислений:

(2.1) Исходные данные:

(2.2) Вычисление констант:

(2.3) Задание начального времени: t=0;

(2.4) Вычисление значений функций в момент времени t=0;

(2.5) Вычисление реакций связей:

Страница:  1  2  3 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы