Анализ динамического поведения механической системы
Рассматриваемая нами механическая система является неизменяемой, т.е. тела, входящие в систему, недеформируемые и скорости их точек относительно друг друга равны нулю. Поэтому сумма мощностей всех внутренних сил будет равняться нулю:
(1.12) = 0;
Будут равняться нулю и мощности следующих внешних сил, приложенных в точках, ск
орости которых равны нулю:
Сумма мощностей остальных внешних сил:
(1.13)
С учетом кинематических соотношений (1.7) сумму мощностей внешних сил определим:
(1.14)
где приведенная сила.
Упругую силу считаем пропорциональной удлинению пружины, которое равно сумме статического и динамического удлинений:
(1.15)
Сила вязкого сопротивления , тогда
(1.16)
В состоянии покоя системы приведенная сила равна нулю. Полагая в (1.16) S=0, =0 и F(t)=0, получаем условие равновесия системы:
(1.17)
Отсюда статическое удлинение пружины равно:
(1.18)
Подставляя (1.18) в (1.16), получаем окончательное выражение для приведенной силы:
(1.19)
Подставив выражения для производной от кинетической энергии и сумму мощностей всех сил с учетом (1.19) в (1.1), получаем дифференциальное уравнение движения системы:
(1.20)
(1.21)
где k циклическая частота свободных колебаний;
n – показатель степени затухания колебаний;
1.2 Определение закона движения системы
Проинтегрируем дифференциальное уравнение (1.20). общее решение этого неоднородного уравнения складывается из общего решения однородного уравнения и частного решения неоднородного :
S = + ;
Однородное дифференциальное уравнение, соответствующее данному неоднородному, имеет вид:
Составим характеристическое уравнение и найдем его корни:
т.к. n < k => решение однородного уравнения имеет вид:
где частное решение дифференциального уравнения ищем в виде правой части:
далее получаем:
Сравнивая коэффициенты при соответствующих тригонометрических функциях справа и слева, получаем систему алгебраических уравнений для определения состояния А и В
Решая эту систему получаем следующие выражения:
А = 0.04 м;
В = - 0.008 м;
Общее решение дифференциального уравнения:
Постоянные интегрирования определяем из начальных условий, при t = 0 имеем:
Решая эту систему получаем:
1.3 Определение реакций внешних и внутренних связей
Для решения этой задачи расчленим механизм на отдельные части и изобразим расчетные схемы отдельно для каждого тела. Определение реакций связей проведем с помощью теоремы об изменении кинетического момента и теоремы об изменении количества движения.
Тело №1:
Тело №2:
Тело №3:
C учётом кинематических соотношений (1.7) полученную систему уравнений преобразуем к вид:
Решая эту систему, получаем выражение для определения реакций связей:
2. Построение алгоритма вычислений:
(2.1) Исходные данные:
(2.2) Вычисление констант:
(2.3) Задание начального времени: t=0;
(2.4) Вычисление значений функций в момент времени t=0;
(2.5) Вычисление реакций связей:
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода