Автоматизация теплового пункта гражданского здания
Зависимая схема не требует использования дорогого тепломеханического оборудования. Главным ее элементом является насос, который необходим при автоматизации узла, а также при применении радиаторных терморегуляторов в системе отопления. Гидроэлеватор в качестве побудителя циркуляции не рассматривается как устройство, создающее недостаточные напоры и не поддающееся автоматизации.
Насос рекомен
дуется устанавливать в контуре системы отопления на подающем или обратном трубопроводе. Он подбирается на расчетный расход теплоносителя в системе отопления и при напоре, соответствующем суммарным потерям давления в ней с запасом в 10 %.
Автоматизация зависимо присоединенной к тепловой сети системы отопления осуществляется с помощью электронных регуляторов температуры (погодных компенсаторов).
2.2.1 Расчет тепловых нагрузок здания для выбора технологического оборудования отопительного теплового пункта
В настоящем дипломном проекте в качестве отапливаемого здания рассматривается пятиэтажное жилое здание с габаритными размерами 10х60х15 м. Поскольку отапливаемое здание является жилым, помимо нагрузки отопления в нем имеется нагрузка горячего водоснабжения. Количество жильцов равно 350 человек. Для выбора технологического оборудования отопительного теплового пункта необходимо вычислить расчетные расходы теплоты на отопление, а также среднечасовой расчетный и максимально часовой расходы теплоты на горячее водоснабжение, суммарную тепловую мощность систем отопления и ГВС.
По СНиП 2.04.07-86 наименьшей температурой воды в подающем трубопроводе для закрытых систем теплоснабжения, необходимым для подогрева воды, поступающей в системы горячего теплоснабжения потребителей должно быть не менее 70 °С, в нашем случае температура равна 95 °С.
Тепловые нагрузки принимают по проектным данным, если в результате обследования установлено соответствие проектам систем отопления и горячего водоснабжения. При отсутствии проектов или их несоответствии фактическим данным тепловые нагрузки для жилых зданий – по удельным характеристикам [5].
Расчетные расходы теплоты (Гкал/ч) на отопление жилых зданий определяют по укрупненным показателям:
, Гкал/ч, (2.4)
где q – удельная отопительная характеристика здания при tн.р= минус 30 0С,
кал/(м3*ч*0С), q = 0,40 ккал/(м3*ч*0С);
a - поправочный коэффициент, учитывающий климатические условия и применяемый в случаях, когда расчетная температура наружного воздуха отличается от 30 0С, a = 0,95;
V – объем здания по наружному обмеру, м3, V = 10*60*15 = 9000м3;
tв – расчетная температура внутри здания, 0С, tв = 20 0С;
tн.р – расчетная температура наружного воздуха, 0С, tн.р = минус 33 0С;
Qот = 0,95×0,40×9000×(20-(-33)) ×10-6=0,18126 Гкал/ч = 210.03 кВт.
Расход воды на отопление рассчитывается по формуле:
, (2.5)
где -расход на отопление, ;
-тепловая нагрузка на отопление, Гкал/ч;
-температура в падающем и обратном трубопроводах, 0С
(95 – 70 0С соответственно).
.
Расходы теплоты системы горячего водоснабжения
Расход горячей воды среднечасовой за сутки наибольшего потребления определяется по формуле:
, (2.6)
где N - число потребителей равно 350 человек;
A - норма расхода горячей воды на одного потребителя, 120л;
Gсрг – среднечасовой расход воды на горячее водоснабжение, м3/ч;
10-3 – коэффициент перевода расхода воды из л/ч в м3/ч.
Максимально часовой расход горячей воды:
, (2.7)
где Gсрг – среднечасовой расход воды на горячее водоснабжение, м3/ч;
Gмаксг – максимально часовой расход воды на горячее водоснабжение, м3/ч;
к - коэффициент часовой неравномерности (при N=350, к=3,55).
Среднечасовой расход горячей воды:
, (2.8)
где -температура холодной воды, 5 0С;
-температура горячей воды для закрытых, 55 0С.
Среднечасовой расчетный и максимально часовой расходы теплоты на горячее водоснабжение (Гкал/ч) определяют по формулам:
, (2.9)
Qгcp = 1.75 х 50 х 0.001 = 0.0875 Гкал/ч = 101,5 кВт,
, (2.10)
Qгмакс = 6,2125 * 50 * 0,001 = 0,310625 Гкал/ч = 360,325 кВт,
где 55 – принятая температура горячей воды;
-температура холодной воды, 5 0С;
Gсрг – среднечасовой расход воды на горячее водоснабжение, м3/ч;
Gгмакс- максимально часовой расход горячей воды, м3/ч.
Суммарный расход теплоты на системы отопление и горячего водоснабжения жилого здания можем рассчитать по формуле:
, (2.11)
где Qå - суммарный расход теплоты на отопление и ГВС, Гкал/ч;
Qотср - расход теплоты на отопление, Гкал/ч;
Qгмакс - расход теплоты на горячее водоснабжение, Гкал/ч.
2.2.2 Выбор технологического оборудования автоматизированного теплового пункта
2.2.2.1 Выбор регулятора перепада давления для систем отопления и горячего водоснабжения
Автоматические регуляторы перепада давления – устройства, стабилизирующие располагаемое давление регулируемого участка на заданном уровне. Регуляторы перепада давления имеют многообразное конструктивное исполнение, позволяющее применять их для любых проектных решений по стабилизации давления теплоносителя. Они могут быть с внутренней или наружной резьбой, с фланцами, с приварными патрубками. Каковы бы ни были конструктивные отличия регуляторов перепада давления все они основаны на одном принципе работы – начальном уравновешивании давления пружины настройки 10 и давления теплоносителя, передаваемого через гибкую диафрагму (мембрану) 7 (рисунок 2.6).
Диафрагма – измерительный элемент. Она воспринимает импульсы давления с обеих сторон и сопоставляет их разницу с заданной величиной, устанавливаемой посредством соответствующего сжатия пружины рукояткой настройки 9. Каждому числу оборотов рукоятки настройки соответствует автоматически поддерживаемый перепад давления. При наличии рассогласования образующаяся активация диафрагмы передается на шток 5 и перемещает затвор клапана 2 относительно регулирующего отверстия. Импульс давления попадает в подмембранное и надмембранное пространство, образуемое крышками 6 и 8, через перепускное отверстие 12 и штуцер 11.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода