Коррозия и защита металлов
Рис. 2. Энергия Гиббса образования некоторых оксидов металлов при =1.
Для большинства металлов условие G > 0, при котором коррозия невозможна, проявляется при очень низких давлениях кислорода, к реализуемых на практике. Однако энергия Гиббса реакции меняется при
изменении температуры (рис.2), соответственно меняется давление кислорода, при котором G > 0.
Например, G = 0 для реакции образования достигается при 10 Па и 298 К, 100 кПа и 473 К. Таким образом, большинство металлов в атмосфере кислорода могут подвергаться химической коррозии. Однако термодинамика указывает лишь на возможность протекания процессов, но не может предсказать их скорость.
Кинетика химической коррозии. Скорость химической коррозии зависит от многих факторов и в первую очередь от характера и продуктов коррозии. В процессе окисления на поверхности металла образуется твердая пленка оксидов. Для продолжения коррозии необходимо, чтобы ионы металла или кислород (или оба одновременно) диффундировали через эту пленку. Обычно с поверхности раздела металл - оксид в направлении от металла к внешней поверхности пленки происходит диффузия ионов металла, а не атомов, так как ионы металлов по размерам меньше атомов. Одновременно в этом же направлении должны перемещаться электроны. Ионы имеют больший радиус, чем атомы, поэтому с поверхности раздела оксид - газ в глубину пленки двигаются не ионы, а атомы кислорода, которые в пленке ионизируются (О + 2е = О) и, встречаясь с ионами металла, образуют оксиды.
Скорость окисления определяется сплошностью и защитными свойствами поверхностной пленки и зависит от наличия в ней трещин и пр. Поскольку пленки продуктов коррозии обычно хрупки и малопластичны, образование трещин в известной степени зависит от того, претерпевает ли пленка в процессе роста растяжения, благоприятствующие ее разрушению, или же она образуется в условиях сжатия. Это, в свою очередь, зависит от соотношения между объемами продуктов коррозии V и металла V, из которого они образовались:
V/V=Mρ/nMρ
где V - объем оксида; M - молярная масса оксида; ρ - плотность металла; n - число атомов металла в молекуле оксида: M - молярная масса металла;
ρ - плотность оксида.
Если V/V<1, то образующаяся пленка не может быть сплошной и защищать металл от коррозии. Скорость роста пленки во времени у таких металлов остается постоянной (рис.3).
Рис.3. Рост толщины слоя пленки δ во времени по линейному (1), параболическому (2) и логарифмическому (3) законам.
Толщина пленки пропорциональна времени окисления:
δ=kt
где - толщина пленки; k - постоянная; t - время окисления.
Для щелочных и щелочно-земельных металлов действительно наблюдается указанный линейный закон роста пленок во времени. При повышении температуры реакция окисления таких металлов начинает резко ускоряться вследствие плохого отвода теплоты. Рыхлая пленка оксида металла является препятствием для отвода теплоты, выделяющейся в ходе реакции. В результате происходит разогрев металла, скорость окисления его резко возрастает. Линейное увеличение толщины пленки во времени наблюдается также при высоких температурах для ванадия, вольфрама и молибдена, образующих летучие оксиды.
Для металлов, у которых в результате химической коррозии получаются сплошные пленки (V/V>1), процесс коррозии будет тормозиться диффузией реагентов через пленку, и по мере утолщения пленки дальнейший рост ее будет все время замедляться. Для таки металлов (Fе, Со, Ni, Мn, Тi) в общем наиболее характерна параболическая зависимость для кинетики окисления (см. рис.3), которая простейшем случае (исключая начальный период роста пленки) определяется выражением:
где - константа; - коэффициент диффузии иона; - концентрация кислорода в газе.
Для ряда металлов (Zn, А1, Cr) установлена логарифмическая зависимость роста пленки во времени (рис.3): δ=klnt
Пленки у таких металлов обладают высокими защитными свойствами. Различают тонкие, средние и толстые пленки. Толщина тонких пленок составляет от толщины монослоя молекул до 40 нм. Такие пленки на поверхности металла невидимы; их наличие может быть установлено с помощью специальных методов. Пленки средней толщины порядка 40-50 нм уже вполне соизмеримы с длиной волны видимых световых лучей. Эти пленки становятся видимыми вследствие их окраски. Толстые пленки могут достигать значительных толщин (например, окалина на стали, толстослойные анодные пленки алюминиевых сплавах).
При рассмотрении коррозии необходимо учитывать наличие на поверхности металла видимых и невидимых пленок, так как коррозийное поведение металла тесно связано с возникновением, устойчивостью и разрушением защитных пленок. Наиболее высокими защитными свойствами обладает сплошная, достаточно тонкая прочная эластичная пленка, имеющая хорошее сцепление с металлом и одинаковый с ним коэффициент линейного расширения, и возникающая на его гладкой поверхности. При этом пленка должна иметь некоторую оптимальную толщину, чтобы в достаточной степени тормозить встречную диффузию молекул агрессивного агента и ионов металла.
На большинстве металлов защитная пленка после достижения известной толщины растрескивается, что позволяет химической коррозии развиваться дальше. Разрушение пленки возможно по ряду причин. Если объем пленки больше объема металла, на месте которого она образовалась, то это приводит к появлению внутренних напряжений, сжимающих пленку параллельно поверхности и стремящихся оторвать ее от металла. При высоких внутренних напряжениях пленка разрушается. Таким образом, важны не только защитные свойства пленки, но и ее механические свойства - прочность, упругость.