Коррозия и защита металлов

Скорость коррозии возрастает с увеличением температуры из-за повышения коэффициента диффузии и изменения защитных свойств пленки. Быстрое разрушение защитной пленки часто вызывает резкие температурные изменения.

Это связано прежде всего с различными коэффициентами линейного расширения металла и пленки.

До сих пор рассматривалось образование, устойчивость и разрушение защитных оксидных п

ленок, возникающих на металле при химическом взаимодействии его с кислородом. Но помимо кислорода ряд других газов может обладать сильными агрессивными свойствами по отношению к металлам при повышенных температурах. Наиболее активными газами являются фтор, диоксид серы, хлор, сероводород. Их агрессивность по отношению к различным металлам, а следовательно, и скорость коррозии последних не одинаковы. Так, например, алюминий и его сплавы, хром и стали с высоким содержанием хрома устойчивы в атмосфере, содержащей в качестве основного агрессивного агента кислород, но становятся совершенно неустойчивыми, если в атмосфере присутствует хлор. Никель неустойчив в атмосфере диоксида серы, а медь вполне устойчива. Коррозия низколегированных и углеродистых сталей в выхлопных газах двигателей внутреннего сгорания, в топочных и печных газах сильно зависит от соотношения СО и О2;. Повышение содержания О2 увеличивает скорость газовой коррозии и, наоборот, повышение содержания СО ослабляет коррозию. Ряд металлов (Со, Ni, Сu, Рb, Сd, Тi) устойчивы в атмосфере чистого водяного пара при температуре выше температуры кипения воды.

Различная скорость коррозии металлов в разных средах обусловлена прежде всего свойствами образующихся на поверхности металлов пленок. При изменении состава внешней среды изменяется состав защитной пленки и ее физико-химические свойства. Кроме того, атомы различных реагентов с разной скоростью диффундируют через защитную пленку.

Таким образом, скорость химической коррозии определяется прежде всего свойствами возникающей при коррозии пленки на поверхности металла, характер которой определяется природой металла и окислителя, а также температурой.

Электрохимическая коррозия

Механизм электрохимической коррозии. Коррозия металла в средах, имеющих ионную проводимость, протекает через анодное окисление металла:

и катодное восстановление окислителя (Ох)

Окислителями при коррозии служат молекулы кислорода, хлора , ионы , , и др. Наиболее часто при коррозии наблюдается ионизация (восстановление) кислорода:

в нейтральной или щелочной среде

в кислой среде

и выделение водорода

Коррозия с участием кислорода называется коррозией с поглощением кислорода (коррозия с кислородной деполяризацией) (рис.4). Коррозия с участием ионов водорода называется коррозией с выделением водорода (коррозией с водородной деполяризацией) (рис.5).

Кроме анодных и катодных реакций при электрохимической коррозии происходит движение электронов в металле и ионов в электролите. Электролитами могут быть растворы солей, кислот и оснований, морская вода, почвенная вода, вода атмосферы, содержащая , , и другие газы.

Ржавчина

()

Катод

Ржавчина (FexOy∙nH2O)

Рис. 4. Схема коррозии стали при контакте с водой с поглощением кислорода (атмосферная коррозия).

Кроме электрохимических реакций при коррозии обычно протекают вторичные химические реакции, например, взаимодействие ионов металла с гидроксид-ионами, концентрация которых повышается в результате катодных реакций .

Как видно, процессы электрохимической коррозии подобны процессам, протекающим в гальванических элементах.

Основным отличием процессов электрохимической коррозии от процессов в гальваническом элементе является отсутствие внешней цепи. Электроны в процессе коррозии не выходят из корродирующего металла, а двигаются внутри металла.

Рис. 5. Схема коррозии стали в растворе с выделением водорода.

Химическая энергия реакции окисления металла передается не в виде работы, а лишь в виде теплоты. Схема электрохимической коррозии железа в контакте с углеродом приведена на рис.5.

На анодных участках происходит реакция окисления железа . На катодных участках происходит восстановление водорода .

Причинами энергетической неоднородности поверхности металла и сплава могут быть неоднородность сплава по химическому и фазовому составам, наличие примесей в металле, пленок на его поверхности и др. На поверхности металла могут быть участки, на которых катодные реакции протекают быстрее (катализируются), чем на других участках. Поэтому катодный процесс в основном будет протекать на участках, которые называются катодными. Наличие участков, на которых катодные реакции протекают быстрее, увеличивает скорость коррозионного процесса. На других участках будет протекать в основном растворение металла и поэтому они называются анодными. Катодные и анодные участки чередуются и имеют очень малые размеры, т.е. речь идет о микроанодах и микрокатодах и соответственно коррозионных микроэлементах. Таким образом, при наличии энергетической неоднородности поверхности металла коррозионный процесс заключается в работе огромного числа коррозионных микроэлементов. Коррозионный элемент в отличие от гальванического является короткозамкнутым микроэлементом.

Страница:  1  2  3  4  5  6  7  8  9 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы