Коррозия и защита металлов
При протекторной защите к изделию подсоединяют металл или сплав, потенциал которого значительно отрицательнее потенциала металла изделия. Такие металлы или сплавы называются протекторами. В качестве материала протекторов используют сплавы алюминия, магния и цинка. В коррозионной среде, например в морской воде, металл протектора растворяется:
или
а на изделии выделяется водород:
Разработана также защита металла от коррозии наложением анодной поляризации. При анодной защите защищаемый металл при растворении покрывается пассивной пленкой, например:
Этот метод применим лишь к металлам и сплавам, способным легко пассивироваться при смещении их потенциала в положительную сторону (Ni, Fе, Сr, Тi, Zr и др.). Анодную защиту применяют, например, для предотвращения коррозии нержавеющих сталей при контакте с серной кислотой.
Изменение свойств коррозионной среды. Для снижения агрессивности среды уменьшают концентрацию компонентов, опасных в коррозионном отношении. Например, в нейтральных средах коррозия обычно протекает с поглощением кислорода. Его удаляют деаэрацией (кипячение, барботаж инертного газа) или восстанавливают с помощью соответствующих восстановителей (сульфиты, гидразин и т.п.) Например,. Агрессивность среды может уменьшаться также при снижении концентрации ионов т.е. повышении рН (подщелачивании). Для защиты от коррозии широко применяют ингибиторы.
Ингибитором называется вещество, при добавлении которого в небольших количествах в среду, где находится металл, значительно уменьшается скорость коррозии металла. Ингибиторы применяют главным образом, в системах, работающих с постоянным или мало обновляемым объемом раствора, например, в некоторых химических аппаратах, системах охлаждения, парогенераторах и т.п. Они применяются при транспортировке газа и нефти, для защиты от коррозии горюче-смазочными веществами, а также в органических средах, морской воде и т.д. Особенно большое применение находят замедлители в процессах травления металлов для удаления с поверхности окалины или ржавчины.
По составу различают ингибиторы органические и неорганические. По условиям, в которых они применяются, их можно разделить на ингибиторы для растворов и летучие ингибиторы, дающие защитные эффект в условиях атмосферной коррозии. Так как эффективность действия ингибитора сильно зависит от рН сред, то можно разделить ингибиторы также на кислотные, щелочные и нейтральные.
Механизм действия значительного числа ингибиторов заключается в адсорбции ингибитора на коррелирующей поверхности и последующем торможении катодных или анодных процессов.
Адсорбционные ингибиторы уменьшают скорость коррозии за счет снижения интенсивности процесса или сокращения площади участков, лимитирующих процесс. К таким ингибиторам относятся органические вещества, содержащие N, P, S, O, Si, например, диэтиламин , уротропин , формальдегид,
пиридин и его производные.
В последние годы широко применяют летучие парофазные ингибиторы. Их используют для защиты машин, аппаратов и других металлических изделий во время их эксплуатации в воздушной атмосфере, при перевозке и хранении. Летучие ингибиторы вводятся в контейнеры, в упаковочные материалы или помещаются в непосредственной близости от рабочего агрегата. Вследствие достаточно высокого давления паров летучие ингибиторы достигают границы раздела металл - воздух и растворяются в пленке влаги, покрывающей металл. Далее они адсорбируются на поверхности металла. В качестве летучих ингибиторов используются обычно амины с небольшой молекулярной массой, в которые вводятся группы или , например бензатриазол, карбонат этаноламина, некоторые органические нитраты.
Пассивационные ингибиторы вызывают образование на поверхности металла защитных пленок и пассивацию металла. К ним относятся неорганические окислители, например, , , и вещества, образующие с ионами коррелирующего металла малорастворимые соединения (полифосфаты, силикаты и карбонаты натрия, соединения кальция, магния и др.). Некоторые органические соединения, например бензоат натрия, облегчают адсорбцию кислорода и этим вызывают пассивацию металла.
Рациональное конструирование изделий должно исключать наличие или сокращать число и размеры особо опасных, с точки зрения коррозии, участков в изделиях или конструкциях (сварных швов, узких щелей, контактов разнородных по электродным потенциалам металлов и др.), а также предусматривать специальную защиту металла) этих участков от коррозии.
Защита от коррозии блуждающими токами. Токи, ответвляющиеся от своего основного пути, называются блуждающими. Источниками блуждающих токов могут быть различные системы и устройства, работающие на постоянном токе, например железнодорожные пути электропоездов, трамвайные линии, заземления постоянного тока, установки для электросварки, электролизные ванны, системы катодной защиты и т.д.
Коррозия металлов под влиянием электрического тока от внешнего источника называется электрокоррозией. В качестве примера рассмотрим электрокоррозию подземного трубопровода во влажной почве. Схема возникновения блуждающего тока от трамвайной линии, где стальные рельсы используются для возвращения тока к генераторной станции, показана на рис.9.
Вследствие плохого контакта между рельсами и недостаточной изоляции рельсов от земли часть возвращающегося тока ответвляется во влажную почву, особенно при наличии путей с низким электросопротивлением, таких, как подземные трубопроводы для газа или воды.
Главный поток электронов, посылаемых генератором постоянного тока (Г), поступает на рельсы. В зоне К возникает ответвление части тока из-за высокого омического сопротивления на стыке. Этот участок рельса становится катодом по отношению к близко расположенному участку трубопровода. Ответвившиеся на этом участке (зона К) электроны связываются с молекулами, находящимися во влажной почве (или ионами в достаточно кислых почвах). Одновременно с поверхности трубы в зоне А во влажную почву переходят катионы железа. Этот участок трубопровода становится анодом и разрушается.