Эконометрическое моделирование временных рядов

Таблица 2.3

коэффициент корреляции

коэффициент корреляции показывает , что связь между х и у умеренная, обратная

rxy=-0,344

rxy=b*(σx/σy)

коэффициент детерминации

вариация результата на 11,9% объясняется ариацией фактора х

r²xy=0,119

r²=(-0,344)²=0,119

-1≤xy≤1 0≤r²xy≤1

полученное уравнение регрессии описывает исх. Параметры (х,у) с точностью 11,9%. Влияние прочих факторов оценивается в 88,9%

критерий Фишера

Подставляя в уравнение регрессии фактические значения х, определяем расчетные значения у^х

Fфакт. =0,81 Fтабл. =5,99

найдем еличину средней ошибки аппроксимации

Fфакт. =(r²/1-r²)*(n-2)

A=1/n(Ai)=1/n (|y-y^x|/y*100%)=(61,19/8)*100%=7,65%

в среднем расчетные значения отклоняются от фактических на 7,65%

Коэффициент Фишера показывает, что это уравнение не имеет экономического смысла, так как Fфакт.< Fтабл.

Полученное значение Fфакт. Указывает на необходимость принять нулевую гипотезу о случайной природу выявленной зависимости и статистической незначимости параметров уравнения и показателей тесноты связи.

Графическое представление полученных результатов показано на рис. 2.1.

Рис.2.1

Из рисунка 2.1. видно, что исходные статистические данные достаточно разборосаны, т.е. явной закономерности не прослеживается.

Результаты вычислений по исходным данным, представлены в таблице 2.1 , полностью совпадают с уже полученным уравнением регрессии.

Таблица 2.4

-0,34337

77,13555

0,382134

21,09393

0,118608

5,924707

0,807417

6

8,34207

210,6129

Выводы:

1. Решена задача парной регрессии методом наименьших квадратов.

2. Низкая достоверность результатов объясняется рядом причин:

- собрано малое количество статистических данных, выбраны случайные районы за небольшой отрезок времени;

- в учебных целях добавлены случайные точки, зависящие от порядкового номера студента и числа студентов в группе;

- расходы на покупку продовольственных товаров в общих расходах зависят от ряда факторов: количества членов семьи, иждивенцев, налогов и др., т.е. реально существует более сложная зависимость, чем парная регрессия от ряда экономических факторов.

3. Разобрана учебная задача не имеющая практического приложения.

Задача 3.

На основании исходных данных о реальном ВВП в мире в целом, регионах и странах с 1990 г. По 2000г., представленных в таблице 3.1 провести экономический анализ. Выбрать для сравнения две страны, с помощью ППП получить аналитические зависимости, описывающие ВВП в выбранных стран, по этим уравнениям построить прогноз их развития в 2001-2020 годах, результаты сравнить с официальными опубликованными данными.

Таблица 3.1.Реальный ВВП в странах (млрд.долл. в ППС 1993 г.)

регионы страны

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

США

5971,1

5935,5

6071,8

6260

6516,7

6725,2

6833

7024,3

7199,9

7379,9

7564,4

Германия

1466,5

1487

1519,7

1503

1546,6

1596,1

1648,8

1690

1732,3

1775,6

1820

Китай

1798,5

1946

2000,9

2502,4

2802,7

3130,6

3496,9

3846,6

4231,2

4654,4

5119,8

Россия

993,2

943,5

804,5

735,2

656

626

588

600

622,1

643,9

666,4

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы