Теория измерений в эконометрике

Для чего в экономике используются средние величины? Обычно для того, чтобы заменить совокупность чисел одним числом, чтобы сравнивать совокупности с помощью средних.

Пусть, например, Y1, Y2, .,Yn - совокупность оценок экспертов, "выставленных" одному объекту экспертизы (например, одному из вариантов стратегического развития фирмы), Z1, Z2, .,Zn - второму (другому варианту такого р

азвития). Как сравнивать эти совокупности? Очевидно, самый простой способ - по средним значениям.

А как вычислять средние? Известны различные виды средних величин: среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое. Напомним, что общее понятие средней величины введено французским математиком первой половины ХIХ в. академиком О. Коши. Оно таково: средней величиной является любая функция f(X1, X2, .,Xn) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X1, X2, .,Xn, и не больше, чем максимальное из этих чисел. Все перечисленные выше виды средних являются средними по Коши.

При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в ТИ). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

Пусть f(X1, X2, .,Xn) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

f(Y1, Y2, .,Yn) < f(Z1, Z2, .,Zn ).

Тогда согласно ТИ для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g из группы допустимых преобразований в соответствующей шкале было справедливо также неравенство

f(g(Y1), g(Y2), .,g(Yn)) < f(g(Z1), g(Z2), .,g(Zn)).

т.е. среднее преобразованных значений из первой совокупности также было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть верно для любых двух совокупностей Y1, Y2, .,Ynи Z1, Z2, .,Zn и, напомним, любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно ТИ только такими средними можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

С помощью математической теории, развитой в монографии [2], удается описать вид допустимых средних в основных шкалах. Сразу ясно, что для данных, измеренных в шкале наименований, в качестве среднего годится только мода.

Средние величины в порядковой шкале

Рассмотрим обработку мнений экспертов, измеренных в порядковой шкале. Справедливо следующее утверждение.

Теорема 1. Из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики).

Теорема 1 справедлива при условии, что среднее f(X1, X2, .,Xn) является непрерывной (по совокупности переменных) и симметрической функцией. Последнее означает, что при перестановке аргументов значение функции f(X1, X2, .,Xn) не меняется. Это условие является вполне естественным, ибо среднюю величину мы находим для совокупности (множества), а не для последовательности. Множество не меняется в зависимости от того, в какой последовательности мы перечисляем его элементы.

Согласно теореме 1 в качестве среднего для данных, измеренных в порядковой шкале, можно использовать, в частности, медиану (при нечетном объеме выборки). При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану. Моду тоже можно использовать - она всегда является членом вариационного ряда. Но никогда нельзя рассчитывать среднее арифметическое, среднее геометрическое и т.д.

Приведем численный пример, показывающий некорректность использования среднего арифметического f(X1, X2) = (X1 + X2)/2 в порядковой шкале. Пусть Y1= 1, Y2 = 11, Z1= 6, Z2= 8. Тогда f(Y1, Y2) = 6, что меньше, чем f(Z1, Z2) = 7. Пусть строго возрастающее преобразование g таково, что g(1) = 1, g(6) = 6, g(8) = 8, g(11) = 99. Таких преобразований много. Например, можно положить g(x) = x при x, не превосходящих 8, и g(x) = 99(x-8)/3 + 8 для х, больших 8. Тогда f(g(Y1), g(Y2)) = 50, что больше, чем f(g(Z1), g(Z2)) = 7. Как видим, в результате допустимого, т.е. строго возрастающего преобразования шкалы упорядоченность средних изменилась.

Таким образом, ТИ выносит жесткий приговор среднему арифметическому - использовать его с порядковой шкале нельзя. Однако же те, кто не знает теории измерений, используют его. Всегда ли они ошибаются? Оказывается, можно в какой-то мере реабилитировать среднее арифметическое, если перейти к вероятностной постановке и к тому удовлетвориться результатами для больших объемов выборок. В монографии [2] получено также следующее утверждение.

Теорема 2. Пусть Y1, Y2, .,Ym - независимые одинаково распределенные случайные величины с функцией распределения F(x), а Z1, Z2, .,Zn - независимые одинаково распределенные случайные величины с функцией распределения H(x), причем выборки Y1, Y2, .,Ym и Z1, Z2, .,Zn независимы между собой и МY1 > MZ1 . Для того, чтобы вероятность события

стремилась к 1 при для любой строго возрастающей непрерывной функции g, удовлетворяющей условию

необходимо и достаточно, чтобы при всех x выполнялось неравенство F(x)<H(x), причем существовало число x0 , для которого F(x0)<H(x0).

Примечание. Условие с верхним пределом носит чисто внутриматематический характер. Фактически функция g - произвольное допустимое преобразование в порядковой шкале.

Согласно теореме 2 средним арифметическим можно пользоваться и в порядковой шкале, если сравниваются выборки из двух распределений, удовлетворяющих приведенному в теореме неравенству. Проще говоря, одна из функций распределения должна всегда лежать над другой. Функции распределения не могут пересекаться, им разрешается только касаться друг друга. Это условие выполнено, например, если функции распределения отличаются только сдвигом:

F(x) = H(x+b)

при некотором b . Последнее условие выполняется, если два значения некоторой величины измеряются с помощью одного и того же средства измерения, у которого распределение погрешностей не меняется при переходе от измерения одного значения рассматриваемой величины к измерению другого.

Средние по Колмогорову

Обобщением нескольких из перечисленных выше средних является среднее по Колмогорову. Для чисел X1, X2, .,Xn среднее по Колмогорову вычисляется по формуле

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы