Теория измерений в эконометрике
Только для абсолютной шкалы результаты измерений - числа в обычном смысле слова. Примером является число людей в комнате. Для абсолютной шкалы допустимым является только тождественное преобразование.
В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее). Затем - по интервальной (шкалы Цельсия,
Фаренгейта, Реомюра). Наконец, после открытия абсолютного нуля температуру можно считать измеренной по шкале отношений (шкала Кельвина). Надо отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины. Другими словами, процесс измерения включает в себя и определение типа шкалы (вместе с обоснованием выбора определенного типа шкалы). Кроме перечисленных шести основных типов шкал, иногда используют и иные шкалы.
Инвариантные алгоритмы и средние величины
Основное требование к алгоритмам анализа данных формулируется в ТИ так: выводы, сделанные на основе данных, измеренных в шкале определенного типа, не должны меняться при допустимом преобразовании шкалы измерения этих данных. Другими словами, выводы должны быть инвариантны по отношению к допустимым преобразованиям шкалы.
Таким образом, одна из основных целей теории измерений - борьба с субъективизмом исследователя при приписывании численных значений реальным объектам. Так, расстояния можно измерять в аршинах, метрах, микронах, милях, парсеках и других единицах измерения. Массу (вес) - в пудах, килограммах, фунтах и др. Цены на товары и услуги можно указывать в юанях, рублях, тенге, гривнах, латах, кронах, марках, долларах США и других валютах (при условии заданных курсов пересчета). Подчеркнем очень важное, хотя и вполне очевидное обстоятельство: выбор единиц измерения зависит от исследователя, т.е. субъективен. Статистические выводы могут быть адекватны реальности только тогда, когда они не зависят от того, какую единицу измерения предпочтет исследователь, т.е. когда они инвариантны относительно допустимого преобразования шкалы.
Оказывается, сформулированное условие является достаточно сильным. Из многих алгоритмов эконометрического анализа данных ему удовлетворяют лишь некоторые. Покажем это на примере сравнения средних величин.
Пусть Х1 , Х2 ,…, Хn - выборка объема n. Часто используют среднее арифметическое
Использование среднего арифметического настолько привычно, что второе слово в термине часто опускают. И говорят о средней зарплате, среднем доходе и других средних для конкретных экономических данных, подразумевая под "средним" среднее арифметическое. Такая традиция может приводить к ошибочным выводам. Покажем это на примере расчета средней заработной платы (среднего дохода) работников условного предприятия (табл.1).
Табл.1. Численность работников различных категорий, их заработная плата и доходы (в условных единицах).
№ п/п |
Категория работников |
Число работников |
Заработная плата |
Суммарные доходы |
1 |
Низкоквалифицированные рабочие |
40 |
100 |
4000 |
2 |
Высококвалифицированные рабочие |
30 |
200 |
6000 |
3 |
Инженеры и служащие |
25 |
300 |
7500 |
4 |
Менеджеры |
4 |
1000 |
4000 |
5 |
Генеральный директор (владелец) |
1 |
18500 |
18500 |
6 |
Всего |
100 |
40000 |
Первые три строки в табл.1 вряд ли требуют пояснений. Менеджеры - это директора по направлениям, а именно, по производству (главный инженер), по финансам, по маркетингу и сбыту, по персоналу (по кадрам). Владелец сам руководит предприятием в качестве генерального директора. В столбце "заработная плата" указаны доходы одного работника соответствующей категории, а в столбце "суммарные доходы" - доходы всех работников соответствующей категории.
Фонд оплаты труда составляет 40000 единиц, работников всего 100, следовательно, средняя заработная плата составляет 40000/100 = 400 единиц. Однако эта средняя арифметическая величина явно не соответствует интуитивному представлению о "средней зарплате". Из 100 работников лишь 5 имеют заработную плату, ее превышающую, а зарплата остальных 95 существенно меньше средней арифметической. Причина очевидна - заработная плата одного человека - генерального директора - превышает заработную плату 95 работников - низкоквалифицированных и высококвалифицированных рабочих, инженеров и служащих.
Ситуация напоминает описанную в известном рассказе о больнице, в которой 10 больных, из них у 9 температура 40 0С, а один уже отмучился, лежи в морге с температурой 0 0С. Между тем средняя температура по больнице равна 36 0С - лучше не бывает!
Сказанное показывает, что среднее арифметическое можно использовать лишь для достаточно однородных совокупностей (без больших выбросов в ту или иную сторону). А какие средние использовать для описания заработной платы? Вполне естественно использовать медиану. Для данных табл.1 медиана - среднее арифметическое 50-го и 51-го работника, если их заработные платы расположены в порядке неубывания. Сначала идут зарплаты 40 низкоквалифицированных рабочих, а затем - с 41-го до 70-го работника - заработные платы высококвалифицированных рабочих. Следовательно, медиана попадает именно на них и равна 200. У 50-ти работников заработная плата не превосходит 200, и у 50-ти - не менее 200, поэтому медиана показывает "центр", около которого группируется основная масса исследуемых величин. Еще одна средняя величина - мода, наиболее часто встречающееся значение. В рассматриваемом случае это заработная плата низкоквалифицируемых рабочих, т.е. 100. Таким образом, для описания зарплаты имеем три средние величины - моду (100 единиц), медиану (200 единиц) и среднее арифметическое (400 единиц). Для наблюдающихся в реальной жизни распределений доходов и заработной платы справедлива та же закономерность: мода меньше медианы, а медиана меньше среднего арифметического.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели