Современные эконометрические методы
Традиционный предрассудок состоит в том, что каждый новый результат, полученный исследователем - это кирпич, вложенный в непрерывно растущее здание науки, который непременно будет проанализирован и использован научным сообществом. Реальная ситуация - совсем иная. Как известно, большинство книг в центральных библиотеках никто никогда не читал. Так что с новым результатом, скорее всего, познакомя
тся лишь несколько человек, да и то поверхностно, а использовать его будут, в лучшем случае, сам автор в дальнейших работах и его ученики.
Основа профессиональных знаний экономиста, менеджера, исследователя и инженера закладывается в период обучения. Затем они пополняются в том узком направлении, в котором работает специалист. Следующий этап - их тиражирование новому поколению. В результате вузовские учебники отстоят от современного развития на десятки лет. Так, учебники по математической статистике, по нашей экспертной оценке, в основном соответствуют 40-60-м годам ХХ в. А потому тем же годам соответствует по своему научному и методологическому уровню большинство вновь публикуемых исследований и тем более - прикладных работ. Одновременно приходится признать, что результаты, которым не повезло, поскольку они не вошли в учебники, независимо от их научной и (или) прикладной ценности почти все забываются.
Активно продолжается развитие тупиковых направлений. Психологически это понятно. Приведу пример из своего опыта. В свое время по заказу Госстандарта я разработал методы оценки параметров гамма-распределения (см. государственный стандарт [12]. Поэтому мне близки и интересны работы по оцениванию параметров по выборкам из распределений, принадлежащих тем или иным параметрическим семействам, понятия функции максимального правдоподобия, эффективности оценок, использование неравенства Рао-Крамера и т.д. К сожалению, я знаю, что это - тупиковая ветвь, поскольку реальные данные не подчиняются каким-либо параметрическим семействам, надо применять иные статистические методы, о которых речь пойдет ниже. Понятно, что специалистам по параметрической статистике, потратившим многие годы на совершенствование в своей области, психологически трудно согласиться с подобным утверждением. В том числе и мне было трудно перейти на другую позицию, отраженную в настоящей книге и исходящую из потребностей прикладных работ.
Точки роста
Отечественная литература по эконометрике и прикладной статистике столь же необозрима, как и мировая. Только в секции "Математические методы исследования" журнала "Заводская лаборатория" с 1960-х годов опубликовано более 1000 статей. Не будем даже пытаться перечислять коллективы исследователей или основные монографии в этой области. Отметим только одно издание. По нашему мнению, наилучшей отечественной книгой по прикладной статистике является сборник статистических таблиц Л.Н. Большева и Н.В.Смирнова [13] с подробными комментариями, играющими роль сжатого учебника и справочника.
Основная цель настоящей главы - выделить и обсудить "точки роста" эконометрики и прикладной статистики, те их направления, которые представляются перспективными в будущем, в XXI веке, но пока в большинстве учебных изданий отодвинуты на задний план традиционными постановками.
При описании современного этапа развития эконометрических и статистических методов целесообразно выделить пять актуальных направлений, в которых развивается современная прикладная статистика, т.е. пять "точек роста": непараметрика (т.е. непараметрическая статистика), робастность, бутстреп, статистика интервальных данных, статистика нечисловых данных (в несколько иной терминологии - статистика объектов нечисловой природы). Обсудим их.
Непараметрическая статистика (см. также главу 4). В первой трети ХХ в., одновременно с параметрической статистикой, в работах Спирмена и Кендалла появились первые непараметрические методы, основанные на коэффициентах ранговой корреляции, носящих ныне имена этих статистиков. Но непараметрика, не делающая нереалистических предположений о том, что функции распределения результатов наблюдений принадлежат тем или иным параметрическим семействам распределений, стала заметной частью статистики лишь со второй трети ХХ века. В 30-е годы появились работы А.Н.Колмогорова и Н.В.Смирнова, предложивших и изучивших статистические критерии, носящие в настоящее время их имена. Эти критерии основаны на использовании так называемого эмпирического процесса. (Как известно, эмпирический процесс – это разность между эмпирической и теоретической функциями распределения, умноженная на квадратный корень из объема выборки.) В работе А.Н.Колмогорова 1933 г. изучено предельное распределение супремума модуля эмпирического процесса, называемого сейчас критерием Колмогорова. Затем Н.В. Смирнов исследовал супремум и инфимум эмпирического процесса, а также интеграл (по теоретической функции распределения) квадрата эмпирического процесса.
Следует отметить, что встречающееся иногда в литературе словосочетание "критерий Колмогорова-Смирнова" некорректно, поскольку эти два статистика никогда не печатались вместе и не изучали один и тот же критерий схожими методами. Корректно сочетание "критерий типа Колмогорова-Смирнова", применяемое для обозначения критериев, основанных на использовании супремума функций от эмпирического процесса.
После второй мировой войны развитие непараметрической статистики пошло быстрыми темпами. Большую роль сыграли работы Ф. Вилкоксона и его школы. К настоящему времени с помощью непараметрических методов можно решать практически тот же круг статистических задач, что и с помощью параметрических. Однако для обеспечения широкого внедрения непараметрических методов необходимо провести еще целый комплекс теоретических и пилотных (т.е. пробных) прикладных работ. Все большую роль играют непараметрические оценки плотности, непараметрические методы регрессии и распознавания образов (дискриминантного анализа). В нашей стране непараметрические методы получили достаточно большую известность после выхода в 1965 г. первого издания упомянутого выше сборника статистических таблиц Л.Н. Большева и Н.В.Смирнова [13], содержащего подробные таблицы для основных непараметрических критериев.
Тем не менее параметрические методы всё еще популярнее непараметрических, особенно среди тех прикладников, кто слабо знаком со статистическими методами. Неоднократно публиковались (см. начало гл.4) экспериментальные данные, свидетельствующие о том, что распределения реально наблюдаемых случайных величин, в частности, ошибок измерения, в подавляющем большинстве случаев отличны от нормальных (гауссовских). Тем не менее теоретики продолжают строить и изучать статистические модели, основанные на гауссовости, а практики - применять подобные методы и модели. Другими словами, "ищут под фонарем, а не там, где потеряли".
Устойчивость статистических процедур (робастность) (см. также главу 10). Если в параметрических постановках на данных накладываются слишком жесткие требования - их функции распределения должны принадлежать определенному параметрическому семейству, то в непараметрических, наоборот, излишне слабые - требуется лишь, чтобы функции распределения были непрерывны. При этом игнорируется априорная информация о том, каков "примерный вид" распределения. Априори можно ожидать, что учет этого "примерного вида" улучшит показатели качества статистических процедур. Развитием этой идеи является теория устойчивости (робастности) статистических процедур, в которой предполагается, что распределение исходных данных мало отличается от некоторого параметрического семейства. За рубежом эту теорию разрабатывали П.Хубер, Ф.Хампель и многие другие. Из монографий на русском языке, трактующих о робастности и устойчивости статистических процедур, самой ранней и наиболее общей была книга [14], следующей - монография [15]. Частными случаями реализации идеи робастности (устойчивости) статистических процедур являются статистика объектов нечисловой природы (см. главу 8) и статистика интервальных данных (см. главу 3)
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели