Современные эконометрические методы
В области асимптотической математической статистики интервальных данных российская наука имеет мировой приоритет. Развертывание работ по рассматриваемой тематике позволит закрепить этот приоритет, получить теоретические результаты, основополагающие в новой области математической статистики и необходимые для обоснованного статистического анализа почти всех типов данных. Со временем во все виды с
татистического программного обеспечения должны быть включены алгоритмы интервальной статистики, "параллельные" обычно используемым алгоритмам прикладной математической статистики. Это позволит в явном виде учесть наличие погрешностей у результатов наблюдений, сблизить позиции метрологов и статистиков.
Статистика объектов нечисловой природы как часть прикладной статистики. Согласно общепринятой в настоящее время классификации статистических методов прикладная статистика делится на следующие четыре области:
статистика (числовых) случайных величин (см. главу 4),
многомерный статистический анализ (см. главу 5),
статистика временных рядов и случайных процессов (см. главу 6),
статистика объектов нечисловой природы (см. главу 8),.
Первые три из этих областей являются классическими. Они были хорошо известны еще в первой половине ХХ в. Остановимся на четвертой, сравнительно недавно вошедшей в массовое сознание специалистов. Ее именуют также статистикой нечисловых данных или попросту нечисловой статистикой. Анализ динамики развития эконометрики и прикладной статистики приводит к выводу, что в XXI в. она станет центральной областью прикладной статистики, поскольку содержит наиболее общие подходы и результаты.
Исходный объект в прикладной математической статистике - это выборка. В вероятностной теории статистики выборка - это совокупность независимых одинаково распределенных случайных элементов. Какова природа этих элементов? В классической математической статистике элементы выборки - это числа. В многомерном статистическом анализе - вектора. А в нечисловой статистике элементы выборки - это объекты нечисловой природы, которые нельзя складывать и умножать на числа. Другими словами, объекты нечисловой природы лежат в пространствах, не имеющих векторной структуры.
Примерами объектов нечисловой природы являются (подробнее см. главу 8):
значения качественных признаков, т.е. результаты кодировки объектов с помощью заданного перечня категорий (градаций);
упорядочения (ранжировки) экспертами образцов продукции (при оценке её технического уровня и конкурентоспособности)) или заявок на проведение научных работ (при проведении конкурсов на выделение грантов);
классификации, т.е. разбиения объектов на группы сходных между собой (кластеры);
толерантности, т.е. бинарные отношения, описывающие сходство объектов между собой, например, сходства тематики научных работ, оцениваемого экспертами с целью рационального формирования экспертных советов внутри определенной области науки;
результаты парных сравнений или контроля качества продукции по альтернативному признаку ("годен" - "брак"), т.е. последовательности из 0 и 1;
множества (обычные или нечеткие), например, зоны, пораженные коррозией, или перечни возможных причин аварии, составленные экспертами независимо друг от друга;
слова, предложения, тексты;
вектора, координаты которых - совокупность значений разнотипных признаков, например, результат составления статистического отчета о научно-технической деятельности (т.н. форма № 1-наука) или заполненная компьютеризированная история болезни, в которой часть признаков носит качественный характер, а часть - количественный;
ответы на вопросы экспертной, маркетинговой или социологической анкеты, часть из которых носит количественный характер (возможно, интервальный), часть сводится к выбору одной из нескольких подсказок, а часть представляет собой тексты; и т.д.
Интервальные данные (см. выше) тоже можно рассматривать как пример объектов нечисловой природы, а именно, как частный случай нечетких множеств.
С начала 70-х годов под влиянием запросов прикладных исследований в социально-экономических, технических, медицинских науках в России активно развивается статистика объектов нечисловой природы, известная также как статистика нечисловых данных или нечисловая статистика. В создании этой сравнительно новой области эконометрики и прикладной математической статистики приоритет принадлежит российским ученым.
Большую роль сыграл основанный в 1973 г. научный семинар "Экспертные оценки и анализ данных". В 60-е годы советское научное сообщество стало интересоваться методами экспертных оценок (об их истории и современном состоянии см. главу 12). Как следствие, началось знакомство с конкретными математизированными теориями, связанными с этими методами. Речь идет о репрезентативной теории измерений, ставшей известной в нашей стране по статье П.Суппеса и Дж.Зинеса в сборнике [17] и книге И.Пфанцагля [18], о теории нечеткости, современный этап которой начался с работ Л.А.Заде [19], теории парных сравнений, описанной в монографии Г.Дэвида [20]. К этому кругу идей примыкают теория случайных множеств (см., например, книгу Ж.Матерона [21]) и методы многомерного шкалирования (описаны, в частности, в монографиях А.Ю.Терехиной [22] и В.Т.Перекреста [23]). Но наибольшее влияние оказали идеи Дж.Кемени, который аксиоматически ввел расстояние между ранжировками (теперь оно именуется в литературе расстоянием Кемени) и предложил использовать в качестве средней величины решение оптимизационной задачи (теперь - медиана Кемени). Его скромная книжка [24], написанная в соавторстве с Дж.Снеллом, породила большой поток исследований.
В течение 70-х годов на основе запросов теории экспертных оценок (а также социологии, экономики, техники и медицины) развивались конкретные направления статистики объектов нечисловой природы. Были установлены связи между конкретными видами таких объектов, разработаны для них вероятностные модели (см. главу 8). Научные итоги этого периода подведены в монографиях [14,25,26]).
Следующий этап - выделение статистики объектов нечисловой природы в качестве самостоятельного направления в эконометрике и прикладной статистике, ядром которого являются методы статистического анализа данных произвольной природы. Программа развития этого нового научного направления впервые была сформулирована в статье [27]. Реализация этой программы была осуществлена в 80-е годы. Для работ этого периода характерна сосредоточенность на внутренних проблемах нечисловой статистики. Ссылки на конкретные монографии, сборники, статьи и иные публикации нескольких десятков авторов приведены в главе 8. Отметим лишь сборник научных статей [28], полностью посвященный нечисловой статистике.
К 90-м годам статистика объектов нечисловой природы с теоретической точки зрения была достаточно хорошо развита, основные идеи, подходы и методы были разработаны и изучены математически, в частности, доказано достаточно много теорем. Однако она оставалась недостаточно апробированной на практике. Это было связано как с ее сравнительной молодостью, так и с общеизвестными особенностями организации науки в 80-е годы, когда отсутствовали достаточные стимулы к тому, чтобы теоретики занялись широким внедрением своих результатов. И в 90-е годы наступило время от математико-статистических исследований перейти к применению полученных результатов на практике.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели