Основы регрессионного анализа. Парная линейная регрессия

Задание: Изобразить в одной системе координат исходные данные, линию регрессии, 95% -ный доверительный интервал.

Задание: Сделать общие выводы, касающиеся проделанной работы и эконометрической интерпретации полученных результатов.

По результатам корреляционного анализа мы выбрали наиболее тесно связан

ные показатели Y (количество выпитого пива) и Х (температура).

Полагая, что связь между ними может быть описана линейной функцией, составили уравнение парной регрессии, используя для оценивания неизвестных параметров МНК, получили, что Y = - 193,558+7,495x.

С изменением регрессора (температуры) на 1 единицу, отклик (кол-во выпитого пива) в среднем изменяется на 7,495 % от объема фляги).

Проведя анализ значимости параметров и самой модели, можно сделать вывод, что оба параметра (θ0 и θ1) значимы, и модель в целом также значима, то есть, верна. Следовательно, эту модель мы можем использовать для дальнейшего прогнозирования.

Нанеся на координатную плоскость исходные данные, линию регрессии, 95% -ный доверительный интервал, мы видим, что большинство значений исходных данных попадает или находится в непосредственной близи от доверительного интервала, что также подтверждает наше предположение о наличии тесной линейной связи между количеством выпитого пива и температурой воздуха в день охоты. Также, исходя из графика, можно заметить, что, чем ближе значение температуры к среднему, тем выше степень точности наших прогнозов.

Следовательно, чтобы расходовать меньше пива и брать его с собой меньше, Робинзону лучше выходить на охоту, когда температура относительно невысока.

Страница:  1  2  3 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы