Множественная регрессия и корреляция
Этот тест применяется в тех случаях, когда предполагается, что дисперсии зависят от некоторых дополнительных переменных. Пусть , . Тест состоит в следующем:
1. Провести обычную регрессию и получить mg width=124 height=25 src="images/referats/5470/image076.png">. (Для этого в диалоговом окне Регрессия установить флажок на функцию Остатки)
2. Построить оценку .
3. Провести регрессию и найти для нее объясненную часть вариации .
4. Построить статистику .
5. Если (где p – число переменных, от которых зависит ), то имеет место гетероскедастичность.
Если , то - гомоскедастичность.
- критическая точка распределения (хи-квадрат) при выбранном уровне значимости , для нахождения которой выполнить следующую последовательность действий: fxСтатистическиеХИ2ОБР
Тест Дарбина – Уотсона (Darbin-Watson) на наличие автокорреляции
Этот тест используется для обнаружения автокорреляции первого порядка, т.е. проверяется некоррелированность не любых, а только соседних величин . Соседними обычно считаются соседние во времени (при рассмотрении временных рядов) или по возрастанию объясняющей переменной значения .
Гипотеза (автокорреляция отсутствует).
Общая схема критерия Дарбина – Уотсона следующая:
1. По эмпирическим данным построить уравнение регрессии по МНК и определить значения отклонений для каждого наблюдения t (t = 1, 2, …, n).
2. Рассчитать статистику DW:
3. По таблице критических точек распределения Дарбина –Уотсона для заданного уровня значимости , числа наблюдений и количества объясняющих переменных определить два значения: - нижняя граница и - верхняя граница (таблица 2).
Полный вариант таблицы приведен в разделе Математико-статистические таблицы (Таблица 5. Значения dHи dBкритерия Дарбина—Уотсона на уровне значимости = 0,05 (n — число наблюдений, р — число объясняющих переменных). множественный корреляция регрессия
Таблица 2.
Статистика Дарбина – Уотсона, уровень значимости 0,05 | |||||||||||
|
1 |
2 |
3 |
4 |
5 | ||||||
|
|
|
|
|
|
|
|
|
|
| |
20 |
1,20 |
1,41 |
1,1 |
1,54 |
1,00 |
1,67 |
0,90 |
1,83 |
0,79 |
1,99 | |
21 |
1,22 |
1,42 |
1,13 |
1,54 |
1,03 |
1,66 |
0,93 |
1,81 |
0,83 |
1,96 | |
22 |
1,24 |
1,43 |
1,15 |
1,54 |
1,05 |
1,66 |
0,96 |
1,80 |
0,86 |
1,94 | |
23 |
1,26 |
1,44 |
1,17 |
1,54 |
1,08 |
1,66 |
0,99 |
1,79 |
0,90 |
1,92 | |
24 |
1,27 |
1,45 |
1,19 |
1,55 |
1,10 |
1,66 |
1,01 |
1,78 |
0,93 |
1,90 | |
25 |
1,29 |
1,45 |
1,21 |
1,55 |
1,12 |
1,66 |
1,04 |
1,77 |
0,95 |
1,89 | |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели