Множественная регрессия и корреляция

1. Построить по МНК «длинную» (unrestricted) регрессию по всем параметрам и найти для нее .

2. Используя МНК, построить «короткую» (restricted) регрессию по первым параметрам c="images/referats/5470/image039.png">и найти для нее .

3. Вычислить F-статистику:

4. Найти критическую точку распределения Фишера при выбранном уровне значимости : .

5. Если , то гипотеза отвергается, т.е. следует использовать «длинную» модель.

Если , то гипотеза принимается, т.е. лучше «короткая» модель.

Тест Чоу на однородность зависимости объясняемой переменной от объясняющих

На практике нередки случаи, когда имеются две выборки пар значений зависимой и объясняющей переменных . Например, одна выборка пар значений переменных объемом получена при одних условиях, а другая, объемом , - при несколько измененных условиях. Необходимо выяснить, действительно ли две выборки однородны в регрессионном смысле? Другими словами, можно ли объединить две выборки в одну и рассматривать единую модель регрессии по (гипотеза )?

Для проверки гипотезы применяется тест Чоу (Chow), состоящий в следующем:

1. Используя МНК, построить модель по выборке объемом и найти для нее .

2. Пусть есть основание предполагать, что вся выборка состоит из двух подвыборок объемами и соответственно. Для каждой из них строится линейная регрессия.- сумма квадратов отклонений значений от регрессионных значений , посчитанных по первой подвыборке, – сумма квадратов отклонений значений от регрессионных значений , посчитанных по второй подвыборке.

3. Вычислить F – статистику:

,

где – число объясняющих переменных модели.

4. Найти критическую точку распределения Фишера при выбранном уровне значимости .

5. Если , то мы можем объединить две выборки в одну. Если , то необходимо использовать две модели.

Тесты на гетероскедастичность

Гомоскедастичность – дисперсия каждого отклонения одинакова для всех значений .

Гетероскедастичность – дисперсия объясняемой переменной (следовательно, и случайных ошибок) непостоянна.

В тестах на гетероскедастичность проверяется основная гипотеза (т.е. модель гомоскедастична) против альтернативной гипотезы : не (т.е. модель гетероскедастична).

Тест Гольдфельда – Куандта (Goldfeld - Quandt)

Этот тест применяется, как правило, когда есть предположение о прямой зависимости дисперсии ошибок от величины некоторой объясняющей переменной, входящей в модель.

Предполагается, что имеет нормальное распределение. Тест включает в себя следующие шаги:

1. Упорядочить данные по убыванию (или по возрастанию) той независимой переменной, относительно которой есть подозрение на гетероскедастичность.

2. Исключить средних (в этом упорядочении) наблюдений (, где – общее количество наблюдений).

3. Провести две независимых регрессии первых наблюдений и последних наблюдений и найти, соответственно, и . Из и выбираем большую и меньшую величины, соответственно, и .

4. Составить статистику и найти по распределению Фишера , где – число объясняющих переменных модели.

5. Если , то гипотеза отвергается, т.е. модель гетероскедастична, а если , то гипотеза принимается, т.е. модель гомоскедастична.

Тест Бреуша – Пагана (Breusch - Pagan)

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы