Решение задачи линейного программирования симплекс-методом

Цель работы: изучить и научиться применять на практике симплекс - метод для решения прямой и двойственной задачи линейного программирования

Теоретическая часть.

Математическая постановка задачи линейного программирования.

Из практики рассмотрения задач математического программирования следует, что в общем виде решить их практически невозможно. Целесообразно рассматривать отдельные

классы (виды) задач. Для каждого такого класса удается сформулировать алгоритм решения, приемлемый только для данного класса задач. Наиболее разработанными в математическом программировании являются задачи линейного программирования (ЛП).

В задачах линейного программирования целевая функция линейна, а условия-ограничения содержат линейные равенства и линейные неравенства. Переменные могут быть подчинены или не подчинены требованию неотрицательности. Одна и та же задача линейного программирования может быть записана в различной форме. Если все ограничения имеют вид неравенств, то задача записана в стандартной форме. Если все ее ограничения, кроме

представляют собой равенства, то задача линейного программирования записана в канонической форме.

Общий вид задачи линейного программирования

,

Ограничения:

1. Правые части всех ограничений должны быть неотрицательными . Если какой-нибудь из коэффициентов < 0, то необходимо коэффициенты ограничения слева и справа домножить на "-1" и изменить знак данного ограничения на противоположный;

2. Все ограничения должны быть представлены в виде равенств, поэтому при переходе от неравенства к равенству используют аппарат дополнительных переменных.

Если исходные ограничения определяют расход некоторого ресурса (знак ""), то переменные следует интерпретировать как остаток, или неиспользованную часть ресурса. В этом случае – остаточная переменная и вводится в уравнение со знаком "+".

Если исходные ограничения определяют избыток некоторого ресурса (знак ""), то вводится избыточная переменная знаком "-".

Переменные:

Все переменные должны быть неотрицательными, т.е. .

Если переменная не имеет ограничения в знаке, то её нужно представить как разность двух неотрицательных переменных: , где . Такую подстановку следует использовать во всех ограничениях, содержащих эту переменную, а также в выражении для целевой функции.

Если такая переменная попадает в оптимальное решение, то

.

Целевая функция:

Подлежит максимизации или минимизации.

Система ограничений в виде равенств и неравенств образует выпуклое множество - выпуклый многогранник. Это множество может быть ограниченным и неограниченным. Целевая функция задачи линейного программирования также является выпуклой функцией. Таким образом, задача линейного программирования является частным случаем задачи выпуклого программирования.

Рассмотрим систему ограничений задачи линейного программирования в виде равенств

(1)

Система (1) линейных уравнений совместна, если она имеет, по крайней мере, одно решение. Система (1) называется избыточной, если одно из уравнений можно выразить в виде линейной комбинации остальных.

В системе (1) число переменных (неизвестных n больше, чем число ограничений m. Будем считать, что ранг этой системы равен m (система неизбыточна) и что система (1) совместна. Тогда m переменных из общего их числа образуют базисные переменные, а остальные переменных называют небазисными. Если система уравнений имеет решение, то она имеет и базисное решение. Решение системы уравнений (1) называют допустимым, если все его компоненты неотрицательны. Если система линейных уравнений обладает допустимым решением, то она имеет и базисное допустимое решение. Совокупность всех допустимых решений системы (1) есть выпуклое множество, т.е. множество решений задачи линейного программирования выпукло. Так как это множество образовано плоскостями (гиперплоскостями), то оно имеет вид выпуклого многогранника. Базисное допустимое решение соответствует крайней точке выпуклого многогранника (его грани или вершине). Если существует оптимальное решение задачи линейного программирования, то существует базисное оптимальное решение.

Целевая функция задачи линейного программирования есть уравнение плоскости (или гиперплоскости для числа переменных больше трех). Максимальное или минимальное значение целевая функция задачи линейного программирования достигает либо в вершине выпуклого многогранника, либо на одной из его граней. Таким образом, решение (решения) задачи линейного программирования лежит в вершинах выпуклого многогранника и для его нахождения надо вычислить значения целевой функции в вершинах выпуклого многогранника, определяемого условиями-ограничениями задачи.

Решение задачи линейного программирования графическим методом.

Трудность построения математической модели заключается в идентификации переменных и последующем представлении цели и ограничений в виде математических функций этих переменных. Если модель содержит только две переменные, то задачу линейного программирования можно решить графически. В случае трёх переменных графическое решение становится менее наглядным, а при большем значении переменных – даже невозможным. Однако графическое решение позволяет сделать выводы, которые служат основой для разработки общего метода решения задачи линейного программирования.

Первый шаг при использовании графического метода заключается в геометрическом представлении допустимых решений, т.е. построении области допустимых решений (ОДР.), в которой одновременно удовлетворяются все ограничения модели. При получении графического решения переменная откладывается по горизонтальной оси, а – по вертикальной. При формировании ОДР необходимо предотвратить получение недопустимых решений, которые связаны с необходимостью выполнения условия неотрицательности переменных. Перед построением необходимо определить квадранты, в которых будет располагаться ОДР. Квадранты определяются знаками переменных и . Условия неотрицательности переменных и ограничивают область их допустимых значений первым квадрантом. Если переменная не ограниченна в знаке, то область ограничивается первым и вторым квадрантом, если , то – первым и четвёртым квадрантом. Другие границы пространства решений на плоскости , изображены прямыми линиями, построенными по уравнениям ограничений при условии замены знака на знак "=". При этом необходимо учитывать следующее: правые части всех ограничений должны быть неотрицательными . Если какое-нибудь ограничение < 0, то необходимо коэффициенты соответствующего ограничения слева и справа до-множить на "-1" и изменить знак неравенства данного ограничения на противоположный. Области, в которых выполняются соответствующие ограничения в виде неравенств, указываются стрелками, направленными в сторону допустимых значений переменных.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы