Решение задачи линейного программирования симплекс-методом
В двойственной задаче переменные могут быть неотрицательными (), не ограниченными в знаке (), неположительными (). При решении ДЗ, как и ПЗ должны выполняться условия неотрицательности ограничений и п
еременных. Для представления двойственной задачи в стандартной форме используются следующие подстановки:
если переменная не ограничена в знаке, то ;
если , то .
Такие подстановки следует использовать во всех ограничениях, содержащих эти переменные, а также в выражении для целевой функции.
После приведения ДЗ к стандартному виду используется симплекс - метод. Алгоритм получения решения тот же, что и для прямой задачи.
II. Практическая часть
1. Решение задачи линейного программирования графическим методом.
Дана следующая задача линейного программирования (ЗЛП).
,
1.1. Все ограничения задачи .
1.2. Переменная ограниченна в знаке, поэтому . Переменная не ограничена в знаке, поэтому вводим замену , где .
Область допустимых решений будет ограничиваться I и IV квадрантом.
1.3. Построение ограничений и градиента целевой функции :
1.4. Область допустимых решений – отрезок AB.
1.5. Точка А – оптимальная. Координаты т. А:
; ; .
2. Решение задачи линейного программирования симплекс-методом.
Прямая задача.
Задачу линейного программирования для любой вершины в компактной форме можно представить в виде:
Для получения используем алгоритм, приведённый в теоретической части.
1. Переход от неравенств к равенствам по правилам введения дополнительных переменных. Исходную задачу необходимо привести к стандартной форме: введем замену по переменной , и дополнительные переменные:
,
Полученный вид ЗЛП не позволяет сформировать начальный допустимый базис, т. к. нельзя выделить единичные орты во втором и третьем равенствах. Для получения начального допустимого базиса введём искусственные переменные. В результате получим:
,
2. Общее число переменных определим по формуле: =3+2+2=7, где - число искусственных переменных. Число базисных переменных определяется числом ограничений, т. к. , то система имеет три базисные переменные и небазисные переменные .
3. Получение - строки для СТ (0). Приведём целевую функцию к виду
.
Получим из (2): , из (3):
4. Формирование симплекс – таблицы на первом шаге:
Начальный базис
СТ (0) РС
|
|
|
|
|
|
|
|
ПЧ | |
|
1 |
-1-4M |
3+3M |
-3M-3 |
M |
0 |
0 |
0 |
-12M |
|
0 |
1 |
2 |
-2 |
0 |
1 |
0 |
0 |
4 |
|
0 |
3 |
-4 |
4 |
0 |
0 |
1 |
0 |
12 |
|
0 |
1 |
1 |
-1 |
-1 |
0 |
0 |
1 |
0 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели