Классический метод наименьших квадратов
Метод наименьших квадратов (МНК) – один из наиболее широко используемых методов при решении многих задач восстановления регрессионных зависимостей[1]. Впервые МНК был использован Лежандром в 1806 г. для решения задач небесной механики на основе экспериментальных данных астрономических наблюдений. В 1809 г. Гаусс изложил статистическую интерпретацию МНК и тем самым дал начало широкого применен
ия статистических методов при решении задач восстановления регрессионных зависимостей. Строгое математическое обоснование и установление границ содержательной применимости метода наименьших квадратов даны А.А. Марковым и А.Н. Колмогоровым. Ныне способ представляет собой один из важнейших разделов математической статистики и широко используется для статистических выводов в различных областях науки и техники.
Приведу краткое описание данного метода. Метод наименьших квадратов — один из методов регрессионного анализа для оценки неизвестных величин по результатам измерений, содержащих случайные ошибки. Применяется также для приближённого представления заданной функции другими (более простыми) функциями и часто оказывается полезным при обработке наблюдений. В настоящее время широко применяется при обработке количественных результатов естественнонаучных опытов, технических данных, астрономических и геодезических наблюдений и измерений.
Можно выделить следующие достоинства метода:
а) расчеты сводятся к механической процедуре нахождения коэффициентов;
б) доступность полученных математических выводов.
Основным недостатком МНК является чувствительность оценок к резким выбросам, которые встречаются в исходных данных.
Рассмотрю применение классического метода наименьших квадратов для нахождения неизвестных параметров уравнения регрессии на примере модели линейной парной регрессии. Пусть подобрана эмпирическая линия, по виду которой можно судить о том, что связь между независимой переменной и зависимой переменной линейна и описывается равенством:
(1)
Необходимо найти такие значения параметров и , которые бы доставляли минимум функции (1), т. е. минимизировали бы сумму квадратов отклонений наблюдаемых значений результативного признака от теоретических значений (значений, рассчитанных на основании уравнения регрессии):
(2)
При минимизации функции (1) неизвестными являются значения коэффициентов регрессии и Значения зависимой и независимой переменных известны из наблюдений.
Для того чтобы найти минимум функции двух переменных, нужно вычислить частные производные этой функции по каждой из оцениваемых параметров и приравнять их к нулю. В результате получаем стационарную систему уравнений для функции (2):
регрессивный оценка обработка результат
Если разделить обе части каждого уравнения системы на (-2), раскрыть скобки и привести подобные члены, то получим систему:
Эта система нормальных уравнений относительно коэффициентов и для зависимости
Решением системы нормальных уравнений являются оценки неизвестных параметров уравнения регрессии и :
Где - среднее значение зависимого признака;
- среднее значение независимого признака;
- среднее арифметическое значение произведения зависимого и независимого признаков;
- дисперсия независимого признака;
- ковариация между зависимым и независимым признаками.
Рассмотрим применение МНК на конкретном примере.
Имеются данные о цене на нефть (долларов за баррель) и индексе акций нефтяной компании (в процентных пунктах). Требуется найти эмпирическую формулу, отражающую связь между ценой на нефть и индексом акций нефтяной компании исходя из предположения, что связь между указанными переменными линейна и описывается функцией вида
Зависимой переменной в данной регрессионной модели будет являться индекс акций нефтяной компании, а независимой - цена на нефть.
Для нахождения коэффициентов и построим вспомогательную таблицу (1).
Таблица 1.
Таблица для нахождения коэффициентов и
Запишем систему нормальных уравнений исходя из данных таблицы:
Решением данной системы будут следующие числа:
Таким образом, уровень регрессии, описывающее зависимость между ценой на нефть и индексом акций нефтяной компании, можно записать как:
Другие рефераты на тему «Экономико-математическое моделирование»:
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Математические методы в решении экономических задач
- Использование методов линейного программирования и экономического моделирования в технологических процессах
- Статистическое моделирование
- Построение и анализ функции спроса на товар
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели