Использование методов линейного программирования и экономического моделирования в технологических процессах
1. смесь должна содержать не менее 0,8% кальция:
2. смесь должна содержать не более 1,2% кальция:
Эти ограничения можно записать в более простой форме, объединив в левых частях неравенств члены, содержащие , и :
Аналогично записываются условия по оставшимся питательным веществам.
Окончательная математическая формулировка задачи может быть представлена в следующем виде:
Задача 3
Промышленная фирма производит изделие, представляющее собой сборку из трех различных узлов. Эти узлы изготовляются на двух заводах. Из-за различий в составе технологического оборудования производительность заводов по выпуску каждого из трех видов узлов неодинакова. В приводимой ниже таблице содержатся исходные данные, характеризующие как производительность заводов по выпуску каждого из узлов, так и максимальный суммарный ресурс времени, которым в течение недели располагает каждый из заводов для производства этих узлов.
Идеальной является такая ситуация, когда производственные мощности обоих заводов используются таким образом, что в итоге обеспечивается выпуск одинакового количества каждого из видов узлов. Однако этого трудно добиться из-за различий в производительности заводов. Более реальная цель состоит в том, чтобы максимизировать выпуск изделий, что, по существу, эквивалентно минимизации дисбаланса, возникающего вследствие некомплектности поставки по одному или двум видам узлов.
Возможный объем производства каждого из трех видов узлов зависит от того, какой фонд времени выделяет каждый завод для их изготовления.
Требуется определить еженедельные затраты времени (в часах) на производство каждого из трех видов узлов на каждом заводе, не превышающие в сумме временные ресурсы каждого завода и обеспечивающие максимальный выпуск изделий.
Решение.
Пусть - недельный фонд времени (в часах), выделяемый на заводе i для производства узла j. Тогда объемы производства каждого из трех комплектующих узлов будут равны
Так как в конечной сборке каждый из комплектующих узлов представлен в одном экземпляре, то количество конечных изделий должно быть равно количеству комплектующих узлов, объем производства которых минимален. Поэтому количество конечных изделий можно выразить через число комплектующих узлов следующим образом:
Условия рассматриваемой задачи устанавливают ограничения только на фонд времени, которым располагает каждый завод. Тогда математическую модель можно представить в следующем виде:
Задача 4
На предприятии производятся два вида продукции из двух видов сырья. Производство единицы продукта 1 (первого вида) приносит предприятию доход, равный 10 единицам, а производство единицы продукта 2 (второго вида) - доход в 8 единиц. Переработка сырья производится аппаратами двух типов, которые условно называются в дальнейшем машинами и агрегатами. На переработке сырья первого вида занято пять машин, причем производственные условия не допускают, чтобы суммарное время использования машин на этой работе превышало 40 ч (за некоторый период). На переработке сырья второго вида занято 25 агрегатов; суммарное время их использования в течение того же периода не должно превышать 200 ч. При производстве единицы продукта 1 на переработку сырья первого вида затрачивается 4 ч и на переработку сырья второго вида - 9 ч, в то время как производство единицы продукта 2 требует затраты 3 ч на переработку каждого из видов сырья.
На предприятии принимается решение увеличить выпуск продукции как за счет приобретения нового оборудования тех типов, что и имеющиеся, так и за счет сверхурочных часов работы.
Максимальное число сверхурочных часов, приходящихся на период, равно восьми, причем эти часы должны распределяться на переработку первого и второго видов сырья равномерно. Доплата за час сверхурочной работы на переработке любого из видов сырья одинакова; полная оплата за час сверхурочной работы равна 2 единицам. Повышение затрат за период, связанный с приобретением одной машины, перерабатывающей сырье первого вида, составляет 10 единиц. Агрегаты, перерабатывающие сырье второго вида, дополнительно не приобретаются.
Необходимо максимизировать доход от выпуска продукции.
Решение
Задачу максимизации дохода от выпуска продукции можно записать как задачу математического программирования:
Здесь через и обозначены соответственно искомые количества производимых продуктов первого и второго видов, через - количество приобретаемых дополнительных машин для переработки сырья первого вида и через - число часов сверхурочной работы. Целевая функция представляет собой величину суммарного дохода. Первое ограничение связано с невозможностью превысить лимит времени на переработку сырья первого вида, второе - с невозможностью превысить лимит времени на переработку сырья второго вида, третье ограничение и условие неотрицательности переменных самоочевидны.
Задача 5
Для обеспечения нормальной работы оборудования необходимо закупить n видов запасных частей на сумму d рублей. Стоимость j-ой детали равна , потребность в ней есть случайная величина , имеющая показательный закон распределения с параметром . Использование j-ой детали позволяет получить прибыль . Отсутствие детали в случае необходимости приводит к убыткам . Если деталь не используется в данном периоде, то убыток составляет . Как распределить имеющиеся средства, чтобы общая прибыль была наибольшей?
Решение
Другие рефераты на тему «Экономико-математическое моделирование»:
- Производная и ее применение в экономической теории
- Математические методы экономики
- Оптимизация сетевой модели комплекса производственных работ
- Классическое вариационное исчисление. Уравнение Эйлера. Задача вариационного исчисления с подвижными границами
- Промышленная политика и особенности ее реализации в условиях модернизации экономики
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели