Использование математических методов и моделей в управлении микроэкономическими системами
Шаг 4: Точку {4} соединяем кратчайшим маршрутом со следующей точкой.
Шаг 5: Точки {4} и {5} соединяем кратчайшим маршрутом со следующей точкой.
Шаг 6: Точки {4} и {6} соединяем кратчайшим маршрутом со следующей точкой.
В результате итераций мы нашли кратчайшие маршруты, записанные ниже в таблицу 2.
Таблица 2
Узел сети |
Кратчайший маршрут | |
топология |
протяженность | |
2 |
1-2 |
5 |
3 |
1-2-3 |
9 |
4 |
1-2-3-4 или 1-4 |
11 |
5 |
1-2-3-4-5 или 1-4-5 |
14 |
6 |
1-2-3-4-5-6 или 1-4-5-6 |
22 |
7 |
1-2-3-4-5-6-7 или 1-4-5-6-7 |
25 |
Пример:
Транспортная компания выбирает маршрут из пункта 1 в пункт 7 для доставки товара и желает сократить время в пути своего автотранспорта. Время необходимое для перевозки товара по каждому участку пути обозначено рядом с каждым ребром сети. Необходимо проложить маршрут, обеспечивающий минимальное время автотранспорта в пути.
С помощью алгоритма построения кратчайшего маршрута такой тип задачи можно решить. В результате расчетов минимальное время в пути будет составлять 25 часов.
4. Нахождение максимального потока.
Найти максимальный поток можно одним из нижеописанных способов.
4.1 Серия последовательных шагов.
На графиках укажем степень насыщения потока над каждым ребром, а в скобках остаточную пропускную способность.
Шаг 1: построим поток 1-2-3-4-5-6-7 и найдем максимальную пропускную способность этого пути.
Min (Cij) = C34 = 2
Φ1 = 2
Поток не полный
Шаг 2: построим поток 1-4-5-6-7
Min (Cij) = C45 = 1
Φ2 = Φ1 + 1= 3
Поток не полный
Шаг 3: построим поток 1-4-7
Min (Cij) = C14 = 10
Φ3 = Φ2 + 10= 13
Φ3 =13 – полный поток
4.2 Метод разделяющих сечений
Обозначим все возможные разделяющие сечения данной сети и опишем их характеристики ниже.
1) Χ = {1}, = {2, 3, 4, 5, 6, 7}
С1 = С(1; 2) + С(1; 3) = 5+11=16
2) Χ = {1, 2}, = {3, 4, 5, 6, 7}
С2 = С(1; 4) + С(2; 3) = 11+4=15
3) Χ = {1, 3}, = {2, 4, 5, 6, 7}
С3 = С(1; 2) + С(2; 3) + С(1, 4) + С(3, 4) = 5+4+11+2=22
4) Χ = {1, 2, 3}, = {4, 5, 6, 7}
С4 = С(1; 4) + С(3, 2) = 11+2=13
5) Χ = {1, 2, 3, 4}, = {5, 6, 7}
С5 = С(4; 5) + С(4, 7) = 3+15=18
6) Χ = {1, 2, 3, 4, 5}, = {6, 7}
С6 = С(4; 7) + С(5, 6) = 8+15=23
7) Χ = {1, 2, 3, 4, 6}, = {5, 7}
С7 = С(4; 5) + С(4, 7) + С(5, 6) + С(6, 7) = 3+15+8+3=29
8) Χ = {1, 2, 3, 4, 5, 6}, = {7}
С8 = С(4; 7) + С(6, 7) = 15+3=18
Минимальное сечение:
Max Φ = min Ci = min(16, 15, 22, 13, 18, 23, 29, 18) = 13
4.3 Ребра, обеспечивающие пропуск максимального потока через заданную сеть – выделены зеленым цветом. В скобках указана неиспользованная пропускная способность ребра.
4.4
Пример:
Компания, занимающаяся прокладкой газопровода, решает задачу о замене некоторых участков, в связи с увеличившимся спросом у потребителей. Для этого необходимо выявить «узкие» участки газопровода. Пропускные способности каждого участка указаны рядом с ребрами.
После построения полного и максимального потока видно, что участки 1 – 4, 3 – 4, 4 – 5, 6 – 7 нагружены полностью, в то время как на участках 1 – 2, 2 – 3, 4 – 7, 5 – 6 не использована пропускная способность в размерах 3, 2, 5, 5 соответственно.
Раздел II. «Использование метода анализа иерархий для организации поставок»
Предприятие решает вопрос о продлении договора на поставку с одним из поставщиков, основываясь на результатах работы по уже заключенным договорам. Поставщики оцениваются по критериям:
К1 – надежность поставки
К2 – цена
К3 – качество товара
К4 – условия платежа
К5 – возможность внеплановых поставок
Матрица сравнений критериев относительно цели:
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели