Дисперсионный анализ при помощи системы MINITAB для WINDOWS
В этом случае в диалоговом окне указываются следующие значения.
Responses [in separate columns]: field1 field2
Результатом дисперсионного анализа будет таблица представленная на рис.2.
One-Way Analysis of Variance
Analysis of Variance
Source DF SS MS F P
Factor 1 182.7 182.7 3.17 0.105
Error 10 576.2 57.6
Total 11 758.9
Individual 95% C
Is For Mean
Based on Pooled StDev
Level N Mean StDev ------+---------+---------+---------+
field1 7 45.286 9.050 (---------*----------)
field2 5 53.200 4.604 (------------*-----------)
------+---------+---------+---------+
Pooled StDev = 7.591 42.0 48.0 54.0 60.0
Рис.2 Листинг результатов вычислений
Из полученных результатов видно, что P>(=0.05), значит принимается нулевая гипотеза и мы можем сделать вывод о том, что влияние фактора отрасли на уровень износа оборудования незначимо.
Если в опции <Graphs> указать Dotplots of data:Ö, то будет построен следующий график (чертой отмечено среднее значение для группы).
Рис.3 Представление экспериментальных данных
3.2.2. Двухфакторный дисперсионный анализ
Для проведения двухфакторного дисперсионного анализа необходимо подготовить данные, выбрать из меню Stat > ANOVA > Balanced ANOVA и заполнить открывшееся диалоговое окно.
Эта функция позволяет проводить, как одномерный, так и многомерный анализ дисперсии. Факторы могут быть связаны как перекрестно, так и иерархически, они могут быть детерминированными и случайными, однако данные должны быть сбалансированы. Это значит, что для каждого уровня A должны быть одинаковые уровни фактора B, и в том же количестве.
Диалоговое окно.
1. Отклики (Responses) – выберите столбцы, содержащие выходные (зависимые) переменные. Система позволяет анализировать до 50 выходных переменных.
2. Модель (Model) – укажите переменные или их комбинацию, которые включаются в модель.
3. Случайные факторы (Random Factors) – укажите столбец, содержащий случайную переменную.
Пример 3
Пусть данные о проценте износа оборудования для 12 предприятий разных отраслей промышленности и форм собственности представлены в табл.1. Определим, как влияют отрасль промышленности, форма собственности и их взаимодействие на процент износа оборудование. Для этого выберем из меню Stat > ANOVA > Balanced ANOVA и заполним диалоговое окно следующим образом
Responses: d
Model: field owner field*owner
Результаты дисперсионного анализа представлены на рис.4.
Analysis of Variance (Balanced Designs)
Factor Type Levels Values
field fixed 2 Пищевая Машиностр
owner fixed 2 частн госуд
Analysis of Variance for d
Source DF SS MS F P
field 1 102.08 102.08 2.14 0.182
owner 1 184.08 184.08 3.86 0.085
field*owner 1 90.75 90.75 1.90 0.205
Error 8 382.00 47.75
Total 11 758.92
Рис.4 Листинг результатов вычислений для двухфакторной модели
Проанализируем полученные результатs/
Для фактора отрасли P>(=0.05), значит принимается нулевая гипотеза о том, что фактор отрасли не влияет на уровень износа оборудования.
Для фактора формы собственности P>(=0.05), значит принимается нулевая гипотеза о том, что фактор формы собственности не влияет на уровень износа оборудования. Аналогичным образом делаем вывод о том, что на уровень износа оборудование не влияет взаимодействие факторов.
Для анализа многофакторных моделей по несбалансированным данным необходимо выбрать из меню Stat > ANOVA > GeneralLinearModel.
4 Выполнение дисперсионного анализа в Excel
Рассмотрим дисперсионный анализ на следующем примере: за месяц известны данные о выработке рабочего за время работы в первую и во вторую смены.
Таблица 2 - Исходные данные
Смена |
Выработка рабочего, нормо-час |
1 |
12,1; 11,1; 12,6; 12,9; 11,6; 13,1; 12,6; 12,4; 11,6; 17,3; 12,9; 11,6; 12,4 |
2 |
9,9; 11,4; 13,4; 10,4; 12,9; 12,6; 13,9; 13,4; 12,4; 9,9; 10,2; 11,2; 9,7 |
Можно ли считать, что расхождение между уровнями выработки рабочего в первую и во вторую смены несущественно, т.е. можно ли считать, что генеральные средние в двух подгруппах одинаковы и, следовательно, выработка рабочего может быть охарактеризована общей средней.
Решение.
Для того чтобы ответить на поставленные вопросы, рассчитаем среднюю выработку рабочих в каждой смене. Величина выработки в первую и вторую смены различна. Теперь возникает вопрос о том, насколько существенны эти расхождения, нужно проверить предположение о возможном влиянии сменности на выработку рабочих. Результаты расчетов сведены в таблицу 3.
Таблица 3 – Промежуточные расчеты для проведения дисперсионного анализа
Смена |
Средняя выработка, нормо-часы
|
Число смен в месяце
|
Сумма квадратов отклонений вариантов от групповой средней
|
Квадраты отклонений групповых средних от общей средней
|
1 |
12.6308 |
13 |
28.09 |
3,2001 |
2 |
11.6385 |
13 |
28.08 |
3,2008 |
Итого |
|
26 |
=56.1585 |
=6,4008 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели