Дисперсионный анализ при помощи системы MINITAB для WINDOWS

В этом случае в диалоговом окне указываются следующие значения.

Responses [in separate columns]: field1 field2

Результатом дисперсионного анализа будет таблица представленная на рис.2.

One-Way Analysis of Variance

Analysis of Variance

Source DF SS MS F P

Factor 1 182.7 182.7 3.17 0.105

Error 10 576.2 57.6

Total 11 758.9

Individual 95% C

Is For Mean

Based on Pooled StDev

Level N Mean StDev ------+---------+---------+---------+

field1 7 45.286 9.050 (---------*----------)

field2 5 53.200 4.604 (------------*-----------)

------+---------+---------+---------+

Pooled StDev = 7.591 42.0 48.0 54.0 60.0

Рис.2 Листинг результатов вычислений

Из полученных результатов видно, что P>(=0.05), значит принимается нулевая гипотеза и мы можем сделать вывод о том, что влияние фактора отрасли на уровень износа оборудования незначимо.

Если в опции <Graphs> указать Dotplots of data:Ö, то будет построен следующий график (чертой отмечено среднее значение для группы).

Рис.3 Представление экспериментальных данных

3.2.2. Двухфакторный дисперсионный анализ

Для проведения двухфакторного дисперсионного анализа необходимо подготовить данные, выбрать из меню Stat > ANOVA > Balanced ANOVA и заполнить открывшееся диалоговое окно.

Эта функция позволяет проводить, как одномерный, так и многомерный анализ дисперсии. Факторы могут быть связаны как перекрестно, так и иерархически, они могут быть детерминированными и случайными, однако данные должны быть сбалансированы. Это значит, что для каждого уровня A должны быть одинаковые уровни фактора B, и в том же количестве.

Диалоговое окно.

1. Отклики (Responses) – выберите столбцы, содержащие выходные (зависимые) переменные. Система позволяет анализировать до 50 выходных переменных.

2. Модель (Model) – укажите переменные или их комбинацию, которые включаются в модель.

3. Случайные факторы (Random Factors) – укажите столбец, содержащий случайную переменную.

Пример 3

Пусть данные о проценте износа оборудования для 12 предприятий разных отраслей промышленности и форм собственности представлены в табл.1. Определим, как влияют отрасль промышленности, форма собственности и их взаимодействие на процент износа оборудование. Для этого выберем из меню Stat > ANOVA > Balanced ANOVA и заполним диалоговое окно следующим образом

Responses: d

Model: field owner field*owner

Результаты дисперсионного анализа представлены на рис.4.

Analysis of Variance (Balanced Designs)

Factor Type Levels Values

field fixed 2 Пищевая Машиностр

owner fixed 2 частн госуд

Analysis of Variance for d

Source DF SS MS F P

field 1 102.08 102.08 2.14 0.182

owner 1 184.08 184.08 3.86 0.085

field*owner 1 90.75 90.75 1.90 0.205

Error 8 382.00 47.75

Total 11 758.92

Рис.4 Листинг результатов вычислений для двухфакторной модели

Проанализируем полученные результатs/

Для фактора отрасли P>(=0.05), значит принимается нулевая гипотеза о том, что фактор отрасли не влияет на уровень износа оборудования.

Для фактора формы собственности P>(=0.05), значит принимается нулевая гипотеза о том, что фактор формы собственности не влияет на уровень износа оборудования. Аналогичным образом делаем вывод о том, что на уровень износа оборудование не влияет взаимодействие факторов.

Для анализа многофакторных моделей по несбалансированным данным необходимо выбрать из меню Stat > ANOVA > GeneralLinearModel.

4 Выполнение дисперсионного анализа в Excel

Рассмотрим дисперсионный анализ на следующем примере: за месяц известны данные о выработке рабочего за время работы в первую и во вторую смены.

Таблица 2 - Исходные данные

Смена

Выработка рабочего, нормо-час

1

12,1; 11,1; 12,6; 12,9; 11,6; 13,1; 12,6; 12,4; 11,6; 17,3; 12,9; 11,6; 12,4

2

9,9; 11,4; 13,4; 10,4; 12,9; 12,6; 13,9; 13,4; 12,4; 9,9; 10,2; 11,2; 9,7

Можно ли считать, что расхождение между уровнями выработки рабочего в первую и во вторую смены несущественно, т.е. можно ли считать, что генеральные средние в двух подгруппах одинаковы и, следовательно, выработка рабочего может быть охарактеризована общей средней.

Решение.

Для того чтобы ответить на поставленные вопросы, рассчитаем среднюю выработку рабочих в каждой смене. Величина выработки в первую и вторую смены различна. Теперь возникает вопрос о том, насколько существенны эти расхождения, нужно проверить предположение о возможном влиянии сменности на выработку рабочих. Результаты расчетов сведены в таблицу 3.

Таблица 3 – Промежуточные расчеты для проведения дисперсионного анализа

Смена

Средняя выработка, нормо-часы

Число смен в месяце

Сумма квадратов отклонений вариантов от групповой средней

Квадраты отклонений групповых средних от общей средней

1

12.6308

13

28.09

3,2001

2

11.6385

13

28.08

3,2008

Итого

26

=56.1585

=6,4008

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы