Дисперсионный анализ при помощи системы MINITAB для WINDOWS
В табл.2 вычисляется по выделенной части столбца, содержащей m параллельных опытов.
Общая сумма квадратов отклонений Q0 рассчитывается по формуле:
Эту сумму можно разложить на 4 составляющи
е:
1) сумму, характеризующую влияние фактора x1:
;
2) сумму, характеризующую влияние фактора x2:
;
3) сумму, характеризующую результат влияния взаимодействия x1x2:
4) сумму, характеризующую влияние ошибки e:
Указанные пять сумм, поделенные на соответствующее число степеней свободы, дают пять различных оценок дисперсии, если влияние факторов x1 и x2 незначимо. Для проведения дисперсионного анализа вычисляются следующие дисперсии:
1) оценка дисперсии относительно общего среднего:
,
где -общее число наблюдений, а число степеней свободы
;
2) оценка дисперсии «между строками», определяемыми уровнями x1j:
,
где - число степеней свободы.
3) оценка дисперсии «между столбцами», соответствующими уровням фактора x2:
,
где - число степеней свободы;
4) оценка дисперсии «между сериями» по m параллельным опытам каждая
с числом степеней свободы ;
5) оценка дисперсии «внутри серий» по m параллельным опытам, вычисляемая как средняя оценка по всем u1u2 сериям:
с числом степеней свободы .
Числа степеней свободы должны удовлетворять соотношению
Статистическое оценивание значимости влияния факторов x1 , x2 и взаимодействия x1x2 выполняются по F-критерию Фишера, для чего формируются следующие F-отношения:
, , .
Фактор x1 или x2 , или взаимодействие x1x2 признаются незначимым, если соответствующее F-отношение оказывается меньше критического, выбранного из таблиц для принятого уровня значимости и числа степеней свободы сравниваемых дисперсий.
Для того, чтобы сделать вывод о том, влияют ли на исследуемые показатели качественные факторы, выдвигают следующие гипотезы:
H0: , т.е средние значения по всем столбцам равны фактор столбца не оказывает влияния на исследуемый показатель.
H1: , , т.е средние значения по всем столбцам не равны фактор столбца оказывает существенное влияние на исследуемый показатель.
H0: , т.е средние значения по всем строкам равны фактор строки не оказывает влияния на исследуемый показатель.
H1: , , т.е средние значения по всем строкам не равны фактор строки оказывает существенное влияние на исследуемый показатель.
H0: , т.е отклонение взаимодействия факторов равно нулю и взаимодействие не значимо..
H1: , фактор взаимодействия значим
Если , то принимается нулевая гипотеза при соответствующем уровне значимости о том, что исследуемый фактор не оказывает существенного влияния на количественные данные.
Если , то нулевая гипотеза отвергается и принимается альтернативная при соответствующем уровне значимости. Исходя из этого, можно сделать вывод о том, что исследуемый фактор оказывает существенное влияние на количественные данные.
Результаты двухфакторного дисперсионного анализа представляются в виде табл.3.
Таблица 3. - Двухфакторный дисперсионный анализ при равном числе наблюдений в ячейках
Вид изменчивости |
Сумма квадратов отклонений |
Число степеней свободы |
Оценка дисперсии |
F – отношение |
От фактора x1 |
|
|
|
|
От фактора x2 |
|
|
|
|
От взаимо-действия x1x2 |
|
|
|
|
Остаточная (от e) |
|
|
| |
Общая |
|
|
|
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели