Дисперсионный анализ при помощи системы MINITAB для WINDOWS

В табл.2 вычисляется по выделенной части столбца, содержащей m параллельных опытов.

Общая сумма квадратов отклонений Q0 рассчитывается по формуле:

Эту сумму можно разложить на 4 составляющи

е:

1) сумму, характеризующую влияние фактора x1:

;

2) сумму, характеризующую влияние фактора x2:

;

3) сумму, характеризующую результат влияния взаимодействия x1x2:

4) сумму, характеризующую влияние ошибки e:

Указанные пять сумм, поделенные на соответствующее число степеней свободы, дают пять различных оценок дисперсии, если влияние факторов x1 и x2 незначимо. Для проведения дисперсионного анализа вычисляются следующие дисперсии:

1) оценка дисперсии относительно общего среднего:

,

где -общее число наблюдений, а число степеней свободы

;

2) оценка дисперсии «между строками», определяемыми уровнями x1j:

,

где - число степеней свободы.

3) оценка дисперсии «между столбцами», соответствующими уровням фактора x2:

,

где - число степеней свободы;

4) оценка дисперсии «между сериями» по m параллельным опытам каждая

с числом степеней свободы ;

5) оценка дисперсии «внутри серий» по m параллельным опытам, вычисляемая как средняя оценка по всем u1u2 сериям:

с числом степеней свободы .

Числа степеней свободы должны удовлетворять соотношению

Статистическое оценивание значимости влияния факторов x1 , x2 и взаимодействия x1x2 выполняются по F-критерию Фишера, для чего формируются следующие F-отношения:

, , .

Фактор x1 или x2 , или взаимодействие x1x2 признаются незначимым, если соответствующее F-отношение оказывается меньше критического, выбранного из таблиц для принятого уровня значимости и числа степеней свободы сравниваемых дисперсий.

Для того, чтобы сделать вывод о том, влияют ли на исследуемые показатели качественные факторы, выдвигают следующие гипотезы:

H0: , т.е средние значения по всем столбцам равны фактор столбца не оказывает влияния на исследуемый показатель.

H1: , , т.е средние значения по всем столбцам не равны фактор столбца оказывает существенное влияние на исследуемый показатель.

H0: , т.е средние значения по всем строкам равны фактор строки не оказывает влияния на исследуемый показатель.

H1: , , т.е средние значения по всем строкам не равны фактор строки оказывает существенное влияние на исследуемый показатель.

H0: , т.е отклонение взаимодействия факторов равно нулю и взаимодействие не значимо..

H1: , фактор взаимодействия значим

Если , то принимается нулевая гипотеза при соответствующем уровне значимости о том, что исследуемый фактор не оказывает существенного влияния на количественные данные.

Если , то нулевая гипотеза отвергается и принимается альтернативная при соответствующем уровне значимости. Исходя из этого, можно сделать вывод о том, что исследуемый фактор оказывает существенное влияние на количественные данные.

Результаты двухфакторного дисперсионного анализа представляются в виде табл.3.

Таблица 3. - Двухфакторный дисперсионный анализ при равном числе наблюдений в ячейках

Вид изменчивости

Сумма квадратов отклонений

Число степеней свободы

Оценка дисперсии

F – отношение

От фактора

x1

От фактора

x2

От взаимо-действия

x1x2

Остаточная

(от e)

 

Общая  

 

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы