Анализ производства и реализация товаров предприятия
; . (1.3.3а, б)
Среднее квадратическое отклонение от средней высчитывается по формуле:
. (1.3.4)
Коэффициенты вариации:
;
. (1.3.5а, б)
Кроме рассмотренных показателей имеются другие показатели, которые характеризуют структуру рядов распределения, например мода и медиана.
Мода – это значение признака, наиболее часто встречающееся в изучаемых явлениях.
Мода в интервальных рядах высчитывается по формуле:
, (1.3.6)
где: Мо – мода;
xmo – нижняя граница модального интервала[1];
imo – величина модального интервала;
fmo – частота соответствующая модальному интервалу;
fmo-1 – частота предшествующая модальному интервалу;
fmo+1 – частота интервала следующего за модальным.
Медиана – величина, которая делит численность упорядоченного ряда на 2 равные части, одна имеет значение варьирующего признака меньше чем средний вариант, а другая больше.
Медиана в интервальных рядах высчитывается по формуле:
, (1.3.7)
где: Me – медиана;
xmе – нижняя граница медианного интервала[2];
Sf – сумма частот ряда;
SSme-1 – сумма частот, накопленная до медианного интервала;
Fme – частота медианного интервала.
Наряду с медианой для более полной характеристики структуры изучаемого явления применяют квартили. Квартили делят ряд по сумме частот на 4 равные части. Вторым квартилем является медиана. Формулы для остальных квартилей в интервальном ряду имеют вид:
; , (1.3.8)
где: xQ1 и xQ3 – нижние границы соответствующих квартильных интервалов[3];
iQi – величина соответствующего интервала;
SQ1-1 и SQ3-1 – накопленные частоты интервалов, предшествующих соответствующим квартильным;
fQ1 и fQ3 – частоты соответствующих квартильных интервалов.
Квартильное отклонение считается по формуле:
. (1.3.9)
Относительный показатель квартильной вариации:
. (1.3.10)
Коэффициент осцилляции:
. (1.3.11)
Для сравнительного анализа степени асимметрии рассчитывают показатель асимметрии:
, (1.3.12)
где: m3 – центральный момент 3го порядка.
, . (1.3.13а, б)
Степень существенности этого показателя оценивается с помощью средней квадратичной ошибки:
. (1.3.14)
Если , то асимметрия существенна.
Для симметричных распределений рассчитывается показатель эксцесса:
, (1.3.15)
где: m4 – центральный момент четвертого порядка.
; . (1.3.16а, б)
Средняя квадратичная ошибка эксцесса рассчитывается по формуле:
. (1.3.17)
Если , то эксцесс существенен.
1.4 Индексы
Индексы – особые относительные показатели, которые дают количественно-качественную оценку результата изменения соответствующих явлений во времени, в пространстве и по сравнению с планом.
Индексы могут быть рассчитаны на базисной или цепной основе. Индивидуальные индексы себестоимости на базисной и цепной основе имеют вид:
; , (1.4.1а, б)
где: iz, – индивидуальный индекс себестоимости продукции;
zi, – себестоимость в текущем периоде;
z0, zi-1 – себестоимость в базисном и предшествующем периоде.
Индивидуальные индексы объема производства на базисной и цепной основе имеют вид:
; , (1.4.2а, б)
где: iq – индивидуальный индекс объема продукции;
qi – объем произведенной продукции в текущем периоде;
q0, qi-1 – объем продукции в базисном и предшествующем периоде.
Индивидуальный индекс затрат на производство на базисной и цепной основе:
; . (1.4.3а, б)
Агрегатный индекс затрат на производство продукции:
. (1.4.4)
Агрегатный индекс себестоимости продукции:
. (1.4.5)
Агрегатный индекс физического объема продукции:
. (1.4.6)
Индекс переменного состава характеризует изменение среднего уровня признаков за счет влияния факторов:
. (1.4.7)
Индекс постоянного состава показывает средний размер изучаемого признака у отдельных единиц совокупности:
. (1.4.8)
Индекс структурных сдвигов характеризует влияние изменения структуры изучаемой совокупности на динамику среднего уровня признака:
. (1.4.9)
1.5 Корреляционно-регрессионный анализ
Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.
Корреляционно-регрессионный анализ заключается в построении и анализе экономико-математической модели в виде уравнения регрессии (корреляционной связи), выражающего зависимость явления от определяющих его факторов.
Для проведения анализа необходимо определить факторный признак (Х) – который воздействует на другие признаки, и результативный (У) – который испытывает на себе влияние. Связь между явлениями можно охарактеризовать функциональной зависимостью, которая выражается различными функциями: прямолинейной, логарифмической, параболической, гиперболической и т.д.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели